DOI QR코드

DOI QR Code

Analysis of Detuning-filter-assisted All-optical Wavelength Conversion Based on a Semiconductor Optical Amplifier with Strong Wavelength Dependence of Gain and Phase

  • Qin, Cui (School of Communication Engineering, Nanjing Institute of Technology) ;
  • Zhao, Jing (School of Communication Engineering, Nanjing Institute of Technology) ;
  • Yu, Huilong (School of Communication Engineering, Nanjing Institute of Technology) ;
  • Zhang, Jian (School of Communication Engineering, Nanjing Institute of Technology)
  • Received : 2016.09.21
  • Accepted : 2017.08.07
  • Published : 2017.12.25

Abstract

In this paper, we theoretically demonstrate that semiconductor optical amplifiers (SOAs) with strong wavelength dependence of gain and phase are capable of all-optical inverted and non-inverted wavelength conversion (WC) over a wide range, with the assistance of an optical filter. First, the gain dynamics and phase dynamics in a common quantum well (QW) SOA with the $In_{0.53}Ga_{0.47}As/In_{0.7322}Ga_{0.2678}As_{0.5810}P_{0.4190}$ material system are found to be strongly dependent on wavelength, which is mainly related to the wavelength dependence of the differential gain and the differential refractive-index change. Second, the wavelength dependence in an all-optical wavelength converter based on the QW SOA cascaded with a detuning band pass filter is studied. Simulations show that the quality of the converted signal has little dependence on the operation wavelength. Both inverted and non-inverted WC can be achieved, over a large wavelength range. Therefore, although the gain and phase change are strongly wavelength-dependent, the effects of this dependence can be erased by appropriate optical filtering.

Keywords

References

  1. X. Huang, C. Qin, D. Huang, and X. Zhang, "Local carrier recovery acceleration in quantum well semiconductor optical amplifiers," IEEE J. Quantum Electron. 46(10), 1407-1413 (2010). https://doi.org/10.1109/JQE.2010.2047713
  2. A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, Y. Chi, A. Stintz, K. J. Malloy, P. W. E. Smith, and J. S. Aitchison, "Carrier dynamics of quantum-dot, quantum-dash, and quantum-well semiconductor optical amplifiers operating at 1.55 $\{mu}m$," IEEE J. Quantum Electron. 43(11), 982-991 (2007). https://doi.org/10.1109/JQE.2007.904474
  3. C. S. Cleary, M. J. Power, S. Schneider, R. P. Webb, and R. J. Manning, "Fast gain recovery rates with strong wavelength dependence in a non-linear SOA," Opt. Express 18(25), 25726-25737 (2010). https://doi.org/10.1364/OE.18.025726
  4. M. N. Ngo, G. Girault, M. Gay, L. Bramerie, J. C. Simon, R. Brenot, F. Lelarge, and G. H. Duan, "Suppression of slow gain recovery in ultralong quantum-dash semiconductor optical amplifier emitting at 1.55 ${\mu}m$," Opt. Commun. 284(20), 4910-4913 (2011). https://doi.org/10.1016/j.optcom.2011.06.032
  5. S. Z. Ma, Z. Chen, and N. K. Dutta, "All-optical logic gates based on two-photon absorption in semiconductor optical amplifiers," Opt. Commun. 282(23), 4508-4512 (2009). https://doi.org/10.1016/j.optcom.2009.08.039
  6. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren," Error-free all-optical wavelength conversion at 160 gb/s using a semiconductor optical amplifier and an optical bandpass filter," IEEE J. Lightw. Technol. 24(1), 230-236 (2006). https://doi.org/10.1109/JLT.2005.861136
  7. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. W. Shu, I. Bennion, and H. J. S. Dorren," Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier," IEEE J. Lightw. Technol. 25(1), 103-108 (2007). https://doi.org/10.1109/JLT.2006.888484
  8. R. Giller, R. J. Manning, G. Talli, R. P. Webb, and M. J. Adams," Analysis of the dimensional dependence of semiconductor optical amplifier recovery speeds," Opt. Express 15(4), 1773-1782 (2007). https://doi.org/10.1364/OE.15.001773
  9. W. Mathlouthi, F. Vacondio, P. Lemieux, and L. A. Rusch, "SOA gain recovery wavelength dependence: simulation and measurement using a single-color pump-probe technique," Opt. Express 16(25), 20656-20665 (2008). https://doi.org/10.1364/OE.16.020656
  10. M. J. Connelly," Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37(3), 429-437 (2001).
  11. M. J. Connelly, "Wide-band steady-state numerical model and parameter extraction of a tensile-strained bulk semiconductor optical amplifier," IEEE J. Quantum Electron. 43(1), 47-56 (2007). https://doi.org/10.1109/JQE.2006.885205
  12. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, "Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells," IEEE Photon. Technol. Lett. 18(22), 2323- 2325 (2006). https://doi.org/10.1109/LPT.2006.882225
  13. J. J. Dong, X. L. Zhang, S. N. Fu, P. Shum, and D. X. Huang," Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering," IEEE J. Sel. Top. Quantum Electron. 14(3), 770-778 (2008). https://doi.org/10.1109/JSTQE.2008.916248
  14. S. L. Chuang, Physics of Optoelectronic Devices (NewYork: Wiley, 1995).
  15. C.-S. Chang and S. L. Chuang," Modeling of strained quantum-well lasers with spin-orbit coupling," IEEE J. Sel. Top. Quantum Electron. 1(2), 218-229 (1995). https://doi.org/10.1109/2944.401200
  16. T. Ishikawa and J. E. Bowers, "Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strainedlayer quantum well," IEEE J. Quantum Electron. 30(2), 562-570 (1994). https://doi.org/10.1109/3.283804
  17. J. M. Dailey and T. L. Koch," Simple rules for optimizing asymmetries in SOA-based Mach-Zehnder wavelength converters," IEEE J. Lightwave Technol. 27(11), 1480-1488 (2009). https://doi.org/10.1109/JLT.2009.2012875