• 제목/요약/키워드: semiconducting layer

검색결과 101건 처리시간 0.023초

Pentacene을 이용한 유기 TFT의 전기적 특성 향상에 관한 연구 (A STUDY ON THE ELECTRICAL CHARACTERISTICS IMPROVEMENTS OF PENTACENE-BASED ORGANIC THIN FILM TRANSISTORS)

  • 이종혁;박재훈;류세원;김형준;최종선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1515-1517
    • /
    • 2001
  • In this work the electrical characteristics of organic TFTs with the semiconductor-insulator interfaces have been interested. Pentacene is used as an active semiconducting layer. The semiconductor layer of pentacene was thermally evaporated in vacuum at a pressure of about $2{\times}10^{-6}$ Torr and at a deposition rate of 0.3$\AA$/sec. Aluminium and gold were used for gate and source/drain electrodes. before pentacene is deposited on the insulator, the gate dielectric surfaces of two samples were rubbed with lateral and perpendicular to direction of the channel length respectively.

  • PDF

Flexible한 기판을 사용한 유기 박막 트랜지스터의 전기적 특성 연구 (ELECTRICAL CHARACTERISTICS OF ORGANIC THIN FILM TRANSISTORS USING FLEXIBLE SUBSTRATE)

  • 이종혁;강창헌;홍성진;곽윤희;최종선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1590-1592
    • /
    • 2002
  • In this work the electrical characteristics of organic TFTs using organic insulator and flexible polyester substrate have been investigated. Pentacene and PVP(polyvinylphenol) are used as an active semiconducting layer and dielectric layer respectively. Pentacene was thermally evaporated in vacuum at a pressure of about $1{\times}10^{-6}$ Torr and at a deposition rate of $0.5{\AA}$/sec, and PVP was spin-coated. Aluminium and gold were used for gate and source/drain electrodes. 0.1mm thick flexible polyester substrate was used instead of glass or silicon wafer.

  • PDF

고전압 4H-SiC DiMOSFET 제작을 위한 최적화 simulation (Optimization simulation for High Voltage 4H-SiC DiMOSFET fabrication)

  • 김상철;방욱;김남균;김은동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.353-356
    • /
    • 2004
  • This paper discribes the analysis of the I-V characteristics of 4H-SiC DiMOSFET with single epi-layer Silicon Carbide has been around for over a century. However, only in the past two to three decades has its semiconducting properties been sufficently studied and applied, especially for high-power and high frequency devices. We present a numerical simulation-based optimization of DiMOSFET using the general-purpose device simulator MINIMIS-NT. For simulation, a loin thick drift layer with doping concentration of $5{\times}10^{15}/cm^3$ was chosen for 1000V blocking voltage design. The simulation results were used to calculate Baliga's figure of Merit (BFOM) as the criterion structure optimization and comparison.

  • PDF

Theoretical Investigation of the Metallic Spacer-Layer Formation of Fe/Si Multilayered Films

  • Rhee, J.Y.;Kudryavtsev, Y.V.;Kim, K.W.;Lee, Y.P.
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제6권2호
    • /
    • pp.76-78
    • /
    • 2002
  • We have carried out the first-principle electronic structure calculations to investigate the spacer layer formation of Fe/Si multilayered films (MLF) and compared with the results obtained by optical spectroscopy. The computer-simulated spectra based on various structural models of MLF showed that neither FeSi$_2$ nor B2O-phase FeSi, which are semiconducting, could be considered as the spacer layers in the Fe/Si MLF for the strong antiferromagnetic coupling. The optical properties of the spacer extracted from the effective optical response of the MLF strongly support its metallic nature. The optical conductivity spectra of various phases of Fe-Si compounds were calculated and compared with the extracted optical properties of the spacer. From the above theoretical investigations it is concluded that a E2-phase metallic FeSi compound is spontaneously formed at the interfaces during deposition.

  • PDF

Improvement of Interfacial Performances on Insulating and Semi-conducting Silicone Polymer Joint by Plasma-treatment

  • Lee, Ki-Taek;Huh, Chang-Su
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권1호
    • /
    • pp.16-20
    • /
    • 2006
  • In this paper, we investigated the effects of short-term oxygen plasma treatment of semiconducting silicone layer to improve interfacial performances in joints prepared with a insulating silicone materials. Surface characterizations were assessed using contact angle measurement and x-ray photoelectron spectroscopy (XPS), and then adhesion level and electrical performance were evaluated through T-peel tests and electrical breakdown voltage tests of treated semi-conductive and insulating joints. Plasma exposure mainly increased the polar component of surface energy from $0.21\;dyne/cm^2$ to $47\;dyne/cm^2$ with increasing plasma treatment time and then leveled off. Based on XPS analysis, the surface modification can be mainly ascribed to the creation of chemically active functional groups such as C-O, C=O and COH on semi-conductive silicone surface. This oxidized rubber layer is inorganic silica-like structure of Si bound with three to four oxygen atoms ($SiO_x,\;x=3{\sim}4$). The oxygen plasma treatment produces an increase in joint strength that is maximum for 10 min treatment. However, due to brittle property of this oxidized layer, the highly oxidized layer from too much extended treatment could be act as a weak point, decreasing the adhesion strength. In addition, electrical breakdown level of joints with adequate plasma treatment was increased by about $10\;\%$ with model samples of joints prepared with a semi-conducting/ insulating silicone polymer after applied to interface.

표면 처리한 $SiO_2$를 게이트 절연막으로 하는 박막 트랜지스터의 특성 연구 (A STUDY ON THE ELECTRICAL CHARACTERISTICS OF ORGANIC THIN FILM TRANSISTORS WITH SURFACE-TREATED GATE DIELECTRIC LAYER)

  • 이재혁;이용수;박재훈;최종선;김유진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.455-457
    • /
    • 2000
  • In this work the electrical characteristics of organic TFTs with the semiconductor-insulator interfaces, where the gate dielectrics were treated by the two methods which are the deposition of Octadecyltrichlorosilane (OTS) on the insulator and rubbing the insulator surface. Pentacene is used as an active semiconducting layer. The semiconductor layer of pentacene was thermally evaporated in vacuum at a pressure of about $2{\times}10^{-7}$ Torr and at a deposition rate of $0.3{\AA}/sec$. Aluminum and gold were used for the gate and source/drain electrodes. OTS is used as a self-alignment layer between $SiO_2$ and pentacene. The gate dielectric surface was rubbed before pentacene is deposited on the insulator. In order to confirm the changes of the surface morphology the atomic force microscopy (AFM) was utilized. The characteristics of the fabricated TFTs are measured to clarify the effects of the surface treatment.

  • PDF

Stability Assessment of Lead Sulfide Colloidal Quantum Dot Based Schottky Solar Cell

  • Song, Jung-Hoon;Kim, Jun-Kwan;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.413-413
    • /
    • 2012
  • Lead sulfide (PbS) Colloidal quantum dots (CQDs) are promising material for the photovoltaic device due to its various outstanding properties such as tunable band-gap, solution processability, and infrared absorption. More importantly, PbS CQDs have large exciton Bohr radius of 20 nm due to the uniquely large dielectric constants that result in the strong quantum confinement. To exploit desirable properties in photovoltaic device, it is essential to fabricate a device exhibiting stable performance. Unfortunately, the performance of PbS NQDs based Schottky solar cell is considerably degraded according to the exposure in the air. The air-exposed degradation originates on the oxidation of interface between PbS NQDS layer and metal electrode. Therefore, it is necessary to enhance the stability of Schottky junction device by inserting a passivation layer. We investigate the effect of insertion of passivation layer on the performance of Schottky junction solar cells using PbS NQDs with band-gap of 1.3 eV. Schottky solar cell is the simple photovoltaic device with junction between semiconducting layer and metal electrode which a significant built-in-potential is established due to the workfunction difference between two materials. Although the device without passivation layer significantly degraded in several hours, considerable enhancement of stability can be obtained by inserting the very thin LiF layer (<1 nm) as a passivation layer. In this study, LiF layer is inserted between PbS NQDs layer and metal as an interface passivation layer. From the results, we can conclude that employment of very thin LiF layer is effective to enhance the stability of Schottky junction solar cells. We believe that this passivation layer is applicable not only to the PbS NQDs based solar cell, but also the various NQDs materials in order to enhance the stability of the device.

  • PDF

고출력전자기파에 의한 반도체부품의 고장메커니즘 고찰 (Review of Failure Mechanisms on the Semiconductor Devices under Electromagnetic Pulses)

  • 김동신;구용성;김주희;강소연;오원욱;천성일
    • 한국산학기술학회논문지
    • /
    • 제18권6호
    • /
    • pp.37-43
    • /
    • 2017
  • 본 논문에서는 고출력 전자기파 (Electromagnetic pulses, EMP) 영향에 의해 발생하는 반도체 부품의 물리적 상호작용에 대한 원리와 고장 발생 메커니즘의 연구를 위해 선행된 연구 내용을 고찰하였다. 반도체 부품에서의 전자기파 전이 과정은 3층 (공기/유전체/도체) 구조로 설명할 수 있으며, 복소반사계수에 의하여 이론적으로 흡수되는 에너지를 예상할 수 있다. 반도체 부품에 전달된 과도한 고출력 전자기파로 인한 반도체 부품의 주요 고장 원인은 전자기파 커플링에 의한 부품 소재의 줄 열에너지의 발생이다. 전기장에 의한 유전가열과 자기장에 의한 맴돌이손실에 의해 반도체 칩의 P-N 접합 파괴, 회로패턴의 burn-out과 리드 프레임과 칩을 연결하는 와이어의 손상 등이 발생한다. 즉, 반도체 부품에 전달된 전자기파는 반도체 내부 물질과 상호작용을 하며, 쌍극자분극과 이온 전도도 현상이 동시에 발생하여, 칩 내부의 P-N 접합 부분에 과도한 역전압이 형성되어 P-N 접합 파괴를 유발한다. 향후 고 신뢰성을 요구하는 전기전자시스템에 대한 EMP 내성을 향상하기 위한 반도체 부품 수준의 연구가 필요하다.

Schottky Barrier Free Contacts in Graphene/MoS2 Field-Effect-Transistor

  • Qiu, Dongri;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.209.2-209.2
    • /
    • 2015
  • Two dimensional layered materials, such as transition metal dichalcogenides (TMDs) family have been attracted significant attention due to novel physical and chemical properties. Among them, molybdenum disulfide ($MoS_2$) has novel physical phenomena such as absence of dangling bonds, lack of inversion symmetry, valley degrees of freedom. Previous studies have shown that the interface of metal/$MoS_2$ contacts significantly affects device performance due to presence of a scalable Schottky barrier height at their interface, resulting voltage drops and restricting carrier injection. In this study, we report a new device structure by using few-layer graphene as the bottom interconnections, in order to offer Schottky barrier free contact to bi-layer $MoS_2$. The fabrication of process start with mechanically exfoliates bulk graphite that served as the source/drain electrodes. The semiconducting $MoS_2$ flake was deposited onto a $SiO_2$ (280 nm-thick)/Si substrate in which graphene electrodes were pre-deposited. To evaluate the barrier height of contact, we employed thermionic-emission theory to describe our experimental findings. We demonstrate that, the Schottky barrier height dramatically decreases from 300 to 0 meV as function of gate voltages, and further becomes negative values. Our findings suggested that, few-layer graphene could be able to realize ohmic contact and to provide new opportunities in ohmic formations.

  • PDF

압력과 온도측정 기능을 갖는 고성능 플렉시블 촉각센서 (High-Performance Multimodal Flexible Tactile Sensor Capable of Measuring Pressure and Temperature Simultaneously)

  • 장진석;강태형;송한욱;박연규;김민석
    • 한국정밀공학회지
    • /
    • 제31권8호
    • /
    • pp.683-688
    • /
    • 2014
  • This paper presents a high-performance flexible tactile sensor based on inorganic silicon flexible electronics. We created 100 nm-thick semiconducting silicon ribbons equally distributed with 1 mm spacing and $8{\times}8$ arrays to sense the pressure distribution with high-sensitivity and repeatability. The organic silicon rubber substrate was used as a spring material to achieve both of mechanical flexibility and robustness. A thin copper layer was deposited and patterned on top of the pressure sensing layer to create a flexible temperature sensing layer. The fabricated tactile sensor was tested through a series of experiments. The results showed that the tactile sensor is capable of measuring pressure and temperature simultaneously and independently with high precision.