• Title/Summary/Keyword: semicommutative ring

Search Result 13, Processing Time 0.016 seconds

REVERSIBILITY OVER UPPER NILRADICALS

  • Jung, Da Woon;Lee, Chang Ik;Piao, Zhelin;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.447-454
    • /
    • 2020
  • The studies of reversible and NI rings have done important roles in noncommutative ring theory. A ring R shall be called QRUR if ab = 0 for a, b ∈ R implies that ba is contained in the upper nilradical of R, which is a generalization of the NI ring property. In this article we investigate the structure of QRUR rings and examine the QRUR property of several kinds of ring extensions including matrix rings and polynomial rings. We also show that if there exists a weakly semicommutative ring but not QRUR, then Köthe's conjecture does not hold.

ON WEAK ARMENDARIZ IDEALS

  • Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.333-342
    • /
    • 2008
  • We introduce weak Armendariz ideals which are a generalization of ideals have the weakly insertion of factors property (or simply weakly IFP) and investigate their properties. Moreover, we prove that, if I is a weak Armendariz ideal of R, then I[x] is a weak Armendariz ideal of R[x]. As a consequence, we show that, R is weak Armendariz if and only if R[x] is a weak Armendariz ring. Also we obtain a generalization of [8] and [9].

RIGIDNESS AND EXTENDED ARMENDARIZ PROPERTY

  • Baser, Muhittin;Kaynarca, Fatma;Kwak, Tai-Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.157-167
    • /
    • 2011
  • For a ring endomorphism of a ring R, Krempa called $\alpha$ rigid endomorphism if $a{\alpha}(a)$ = 0 implies a = 0 for a $\in$ R, and Hong et al. called R an $\alpha$-rigid ring if there exists a rigid endomorphism $\alpha$. Due to Rege and Chhawchharia, a ring R is called Armendariz if whenever the product of any two polynomials in R[x] over R is zero, then so is the product of any pair of coefficients from the two polynomials. The Armendariz property of polynomials was extended to one of skew polynomials (i.e., $\alpha$-Armendariz rings and $\alpha$-skew Armendariz rings) by Hong et al. In this paper, we study the relationship between $\alpha$-rigid rings and extended Armendariz rings, and so we get various conditions on the rings which are equivalent to the condition of being an $\alpha$-rigid ring. Several known results relating to extended Armendariz rings can be obtained as corollaries of our results.