• Title/Summary/Keyword: semi-inverse approach

Search Result 9, Processing Time 0.032 seconds

Buckling of fully and partially embedded non-prismatic columns using differential quadrature and differential transformation methods

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.221-238
    • /
    • 2008
  • Numerical solution to buckling analysis of beams and columns are obtained by the method of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for various support conditions considering the variation of flexural rigidity. The solution technique is applied to find the buckling load of fully or partially embedded columns such as piles. A simple semi- inverse method of DQ or HDQ is proposed for determining the flexural rigidities at various sections of non-prismatic column ( pile) partially and fully embedded given the buckling load, buckled shape and sub-grade reaction of the soil. The obtained results are compared with the existing solutions available from other numerical methods and analytical results. In addition, this paper also uses a recently developed technique, known as the differential transformation (DT) to determine the critical buckling load of fully or partially supported heavy prismatic piles as well as fully supported non-prismatic piles. In solving the problem, governing differential equation is converted to algebraic equations using differential transformation methods (DT) which must be solved together with applied boundary conditions. The symbolic programming package, Mathematica is ideally suitable to solve such recursive equations by considering fairly large number of terms.

Time-domain Elastic Full-waveform Inversion Using One-dimensional Mesh Continuation Scheme (1차원 유한요소망 연속기법을 이용한 시간영역 탄성파의 역해석)

  • Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.213-221
    • /
    • 2013
  • This paper introduces a mesh continuation scheme for a one-dimensional inverse medium problem to reconstruct the spatial distribution of elastic wave velocities in heterogeneous semi-infinite solid domains. To formulate the inverse problem, perfectly-matched-layers(PMLs) are introduced as wave-absorbing boundaries that surround the finite computational domain truncated from the originally semi-infinite extent. To tackle the inverse problem in the PML-truncated domain, a partial-differential-equations(PDE)-constrained optimization approach is utilized, where a least-squares misfit between calculated and measured surface responses is minimized under the constraint of PML-endowed wave equations. The optimization problem iteratively solves for the unknown wave velocities with their updates calculated by Fletcher-Reeves conjugate gradient algorithms. The optimization is performed using a mesh continuation scheme through which the wave velocity profile is reconstructed in successively denser mesh conditions. Numerical results showed the robust performance of the mesh continuation scheme in reconstructing target wave velocity profile in a layered heterogeneous solid domain.

COSMIC RAYS AND GAMMA-RAYS IN LARGE-SCALE STRUCTURE

  • INOUE SUSUMU;NAGASHIMA MASAHIRO;SUZUKI TAKERU K.;AOKI WAKO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.447-454
    • /
    • 2004
  • During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of $^6Li$ by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.

COMPLETION OF HANKEL PARTIAL CONTRACTIONS OF NON-EXTREMAL TYPE

  • KIM, IN HYOUN;YOO, SEONGUK;YOON, JASANG
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1003-1021
    • /
    • 2015
  • A matrix completion problem has been exploited amply because of its abundant applications and the analysis of contractions enables us to have insight into structure and space of operators. In this article, we focus on a specific completion problem related to Hankel partial contractions. We provide concrete necessary and sufficient conditions for the existence of completion of Hankel partial contractions for both extremal and non-extremal types with lower dimensional matrices. Moreover, we give a negative answer for the conjecture presented in [8]. For our results, we use several tools such as the Nested Determinants Test (or Choleski's Algorithm), the Moore-Penrose inverse, the Schur product techniques, and a congruence of two positive semi-definite matrices; all these suggest an algorithmic approach to solve the contractive completion problem for general Hankel matrices of size $n{\times}n$ in both types.

Integral Approximate Solutions to a One-Dimensional Model for Stratified Thermal Storage Tanks (성층화된 축열조의 1차원모델에 대한 적분 근사해)

  • Chung, Jae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.468-473
    • /
    • 2010
  • This paper deals with approximate integral solutions to the one-dimensional model describing the charging process of stratified thermal storage tanks. Temperature is assumed to be the form of Fermi-Dirac distribution function, which can be separated to two sets of cubic polynomials for each hot and cold side of thermal boundary layers. Proposed approximate integral solutions are compared to the previous works of the approximate analytic solutions and show reasonable agreement. The approach, however, has benefits in mathematical difficulties, complicated solution form and unstable convergence of series solution founded in the previous analytic solutions. Solutions for a semi-infinite region, which have simple closed form solutions, give close agreement to those for a finite region. Thermocline thickness is obtained in closed form and shows proportional behavior to the square root of time and inverse proportional behavior to the square root of flow rate.

Seismic protection of smart base-isolated structures using negative stiffness device and regulated damping

  • Bahar, Arash;Salavati-Khoshghalb, Mohsen;Ejabati, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.359-371
    • /
    • 2018
  • Strong seismic events commonly cause large drift and deformation, and functionality failures in the superstructures. One way to prevent functionality failures is to design structures which are ductile and flexible through yielding when subjected to strong ground excitations. By developing forces that assist motion as "negative stiffness forces", yielding can be achieved. In this paper, we adopt the weakening and damping method to achieve a new approach to reduce all of the structural responses by further adjusting damping phase. A semi-active control system is adopted to perform the experiments. In this adaptation, negative stiffness forces through certain devices are used in weakening phase to reduce structural strength. Magneto-rheological (MR) dampers are then added to preserve stability of the structure. To adjust the voltage in MR dampers, an inverse model is employed in the control system to command MR dampers and generate the desired control forces, where a velocity control algorithm produces initial required control force. An extensive numerical study is conducted to evaluate proposed methodology by using the smart base-isolated benchmark building. Totally, nine control systems are examined to study proposed strategy. Based on the numerical results of seven earthquakes, the use of proposed strategy not only reduces base displacements, base accelerations and base shear but also leads to reduction of accelerations and inter story drifts of the superstructure. Numerical results shows that the usage of inverse model produces the desired regulated damping, thus improving the stability of the structure.

Stochastic identification of masonry parameters in 2D finite elements continuum models

  • Giada Bartolini;Anna De Falco;Filippo Landi
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.429-444
    • /
    • 2023
  • The comprehension and structural modeling of masonry constructions is fundamental to safeguard the integrity of built cultural assets and intervene through adequate actions, especially in earthquake-prone regions. Despite the availability of several modeling strategies and modern computing power, modeling masonry remains a great challenge because of still demanding computational efforts, constraints in performing destructive or semi-destructive in-situ tests, and material uncertainties. This paper investigates the shear behavior of masonry walls by applying a plane-stress FE continuum model with the Modified Masonry-like Material (MMLM). Epistemic uncertainty affecting input parameters of the MMLM is considered in a probabilistic framework. After appointing a suitable probability density function to input quantities according to prior engineering knowledge, uncertainties are propagated to outputs relying on gPCE-based surrogate models to considerably speed up the forward problem-solving. The sensitivity of the response to input parameters is evaluated through the computation of Sobol' indices pointing out the parameters more worthy to be further investigated, when dealing with the seismic assessment of masonry buildings. Finally, masonry mechanical properties are calibrated in a probabilistic setting with the Bayesian approach to the inverse problem based on the available measurements obtained from the experimental load-displacement curves provided by shear compression in-situ tests.

Analyses on the Associations of Dietary Patterns with Colon Cancer Risk (식이유형과 대장암 위험도와의 관련성 분석)

  • Oh Se-Young;Lee Ji-Hyun;Kim Hyo-Jong
    • Journal of Nutrition and Health
    • /
    • v.37 no.7
    • /
    • pp.550-556
    • /
    • 2004
  • Dietary pattern analysis is important complementary approach for identifying associations between diet and chronic disease. A case-control study was conducted in order to examine dietary patterns and the risk of colon cancer in Korea. Data were collected from both 137 cases with either colorectal cancer or large bowl adenomatous polyps and 134 controls regarding social-demographic characteristics and food intake using a semi-quantitative food frequency questionnaire. We conducted factor analysis and identified 6 major dietary patterns: 'Well-being diet' characterized by higher intakes of potatoes, yogurt, soybean paste and vegetables, 'Meat & fish', 'Milk & juice', 'Pork & alcohol', 'Rice & kimchi', and 'Coffee & cake'. We calculated factor scores for each participant and examined the associations between dietary patterns and colon cancer risk. After adjusting for potential confounders, there was a relative risk for colon cancer of 0.16 (95% confidence interval, 0.07 - 0.34) when comparing the highest with the lowest tertile of the 'Well-being' pattern. Significant trends of decreasing risk of colon cancer also emerged with the 'Milk & juice' (OR = 0.40, 95% CI = 0.20 - 0.79). In contrast, inverse associations of the risk were found for 'Pork & alcohol' (OR = 1.92, 95% CI = 0.93 - 3.97), 'Coffee & cake' (OR = 2.18, 95% CI = 1.07 - 4.46). For the 'Meat & fish' pattern, the decreased risk of colon cancer was observed in the second tertile, but not in the highest tertile when comparing to the lowest. The 'Rice & kimchi' pattern had a nonsignificant association with the risk. These data suggest that major dietary patterns derived from the FFQ associated with the risk of colon cancer in Korea. Since foods are not consumed in isolation, dietary pattern research in natural eating behavior may be useful for understanding dietary causes of colon cancer.

Deformations of Cantilever Strips and Beam with Small Elastic Strains (작은 탄성 변형률 하의 고정-자유 지지된 스트립과 보의 변형)

  • 호광수;박기철;임세영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.572-582
    • /
    • 1989
  • Elastic deformations of an infinitely long strip and a beam loaded by uniform pressure upon their upper surfaces, with the fixed-free end dondition, are considered within the range of small strains. All local governing equations are satisfied up to first order in strains, and to take into account the higher order terms neglected in the local governing equations, the overall equilibrium is imposed exactly up to the leading order. The success of the approach relies upon the semi-inverse method and the decomposition of deformations in which the classical linear theory guides the solution. The solution bridges the gap between the two extremes-the classical solutions valid only for infinitesimal deformations and the solutions form the technical theories for deformations with large rotations. The solutions may be used to confirm the technical theories and to verify numerical solutions obtained from finite element analysis.