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COMPLETION OF HANKEL PARTIAL CONTRACTIONS OF

NON-EXTREMAL TYPE

In Hyoun Kim, Seonguk Yoo, and Jasang Yoon

Abstract. A matrix completion problem has been exploited amply be-
cause of its abundant applications and the analysis of contractions enables
us to have insight into structure and space of operators. In this article,
we focus on a specific completion problem related to Hankel partial con-
tractions. We provide concrete necessary and sufficient conditions for the
existence of completion of Hankel partial contractions for both extremal
and non-extremal types with lower dimensional matrices. Moreover, we
give a negative answer for the conjecture presented in [8]. For our results,

we use several tools such as the Nested Determinants Test (or Choleski’s
Algorithm), the Moore-Penrose inverse, the Schur product techniques,
and a congruence of two positive semi-definite matrices; all these suggest
an algorithmic approach to solve the contractive completion problem for
general Hankel matrices of size n× n in both types.

1. Introduction

A partial matrix is a square array in which some entries are specified and
others are not. A completion of a partial matrix is a choice of values for the
unspecified entries. A matrix completion problem asks whether a given partial
matrix has a completion of a desired type. For example, the positive definite
completion problem asks which partial Hermitian matrices have a positive def-
inite completion. For a 2× 2 partial operator matrix A ≡ ( B C

D X ), we say that
X is a solution for A, if A is a completion of a desired type. These comple-
tion problems have been studied by G. Arsene and A. Gheondea [1], by C.
Davis, W. Kahan and H. Weinberger [10] (see also [4] and [9]), by C. Foiaş
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and A. Frazho [11] (using Redheffer products), by S. Parrott [20], and by Y.
L. Shmul’yan and R. N. Yanovskaya [24]; a solution is also implicit in the
work of W. Arveson [2] (see also [17] and [22]). A Hankel matrix is a square
matrix with constant skew-diagonals. A Toeplitz matrix is a square matrix
in which each descending diagonal from left to right is constant. Hankel and
Toeplitz matrices have a long history (see, for instance, [16]) and have given
rise to important recent applications in a variety of areas. A matrix comple-
tion problem is due, in particular, to its many applications, e.g., in probability
and statistics (e.g. entropy methods for missing data, see, for instance, [12]
and [13]), chemistry (e.g. the molecular conformation problem [5]), numerical
analysis (e.g. optimization, see, for instance, [19]), electrical engineering (e.g.
data transmission, coding and image enhancement, see, for instance, [3]) and
geophysics (seismic reconstruction problems, see, for instance, [14]). A Hankel

Partial Contraction (HPC) is a square Hankel matrix such that not all of its
entries are determined, but in which every well-defined submatrix (completely
determined submatrix) is a contraction (in the sense that their operator norms
are at most 1). In this article, we study whether a HPC can be completed to
a contraction or not when the upper left triangle is known. That is, given real
numbers a1, . . . , an, let

(1)

Hn ≡ Hn(a1, a2, . . . , an;x1, . . . , xn−1)

:=















a1 a2 · · · an−1 an
a2 a3 · · · an x1

...
...

. . .
...

...
an−1 an · · · xn−3 xn−2

an x1 · · · xn−2 xn−1















be a Hankel matrix, where x1, . . . , xn−1 are real numbers to be determined.
We then consider:

Problem 1.1. Find the necessary and sufficient conditions on the given real
numbers a1, a2, . . . , an as in (1) to guarantee the existence of a contractive
Hankel completion.

We say that Problem 1.1 is well-posed if Hn is partially contractive, and
that it is soluble if Hn is contractive for some x1, . . . , xn−1. We also say that
Hn is extremal if a21 + · · ·+ a2n = 1.

In [8, Section 4], R. Curto, S. Lee and the third named author of this pa-
per found necessary and sufficient conditions for the existence of contractive
completion of HPC’s of the extremal type for 4× 4 matrices. In this paper, we
improve and extend the main results in [8, Section 4] to the non-extremal type
for 4 × 4 matrices and extremal type for 5 × 5 matrices, respectively. We also
give a negative answer to the conjecture presented in [8, Remark 4.5]. We find
concrete necessary and sufficient conditions for the existence of completion of
4×4 and 5×5 Hankel partial contractions using the Nested Determinants Test
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(or Choleski’s Algorithm), the Moore-Penrose inverse of a matrix, the Schur
product techniques of matrices, and the congruence of the positivity for two
matrices. All these techniques may allow us to solve, algorithmically, the con-
tractive completion problem for the non-extremal type of 5×5 Hankel matrices
and more.

Acknowledgement. The authors are deeply indebted to the referee for several
helpful suggestions. The portions of the proof of some results were obtained
using calculations with the software tool Mathematica [26].

2. Preliminaries

For the reader’s convenience, in this section, we gathered several auxiliary
results which are needed for the proofs of the main results in this article. We
first recall that an n×n matrix Mn×n is a contraction if and only if the matrix

Pn := Pn(Mn×n) := I −Mn×nM
∗
n×n

is positive semi-definite (in symbols, Pn ≥ 0), where I is the identity matrix
and M∗

n×n is the adjoint of Mn×n. In order to check the positivity of Pn, we
use the following version of the Nested Determinants Test.

Lemma 2.1 ([6]). Assume

P := (pij)
n

i,j=1 :=

(

u t

t∗ P0

)

,

where P0 is an (n − 1) × (n − 1) matrix, t is a row vector, and u is a real

number.

(i) If P0 is invertible, then detP = detP0(u − tP−1
0 t∗).

(ii) If P0 is invertible and positive, then P ≥ 0 ⇐⇒ (u− tP−1
0 t∗) ≥ 0 ⇐⇒

detP ≥ 0.
(ii) If u > 0, then P ≥ 0 ⇐⇒ P0 − t∗u−1t ≥ 0.
(iv) If P ≥ 0 and pii = 0 for some i, 1 ≤ i ≤ n, then pij = pji = 0 for all

j = 1, . . . , n.

We next consider:

Lemma 2.2 ([23]). Let M ≡
(

A B
B∗ C

)

be a 2× 2 operator matrix, where A and

C are square matrices and B is a rectangular matrix. Then,

M ≥ 0 if and only if there exists W such that







A ≥ 0,
B = AW , and

C ≥ W ∗AW .

For a m × n matrix A, the Moore-Penrose inverse of A is defined as the
unique n×m matrix A† satisfying all of the following four conditions:

(i) AA†A = A;
(ii) A†AA† = A†;

(iii)
(

AA†)∗ = AA†;
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(iv)
(

A†A
)∗

= A†A.
The following result is a variant of Lemma 2.2.

Lemma 2.3 ([7, Lemma 1.2]). Let M ≡
(

A B
B∗ C

)

be a finite matrix. Then,

M ≥ 0 if and only if the following three conditions hold:
(i) A ≥ 0;
(ii) ranB ⊆ ran A; and
(iii) C ≥ B∗A†B, where A† is the Moore-Penrose inverse of A.

The following result suggests that we could complete (A B
C ∗ ) as a contraction

provided that
(

A B
)

and
(

A C
)T

are contractive, so that it makes some
contribution to establish main results.

Lemma 2.4 (cf. [10], [20]). If
(

A B
)

and
(

A C
)T

are contractions, then

there exists a matrix D such that the matrix (A B
C D ) is a contraction as well.

Here, we pose to introduce matrices whose positive semi-definiteness and
determinant play an important role in getting our main results. For −1 ≤
a, b, c, d ≤ 1, we let

H22 (x) :=

(

a b

b x

)

, H23(x) :=

(

a b c

b c x

)

,

H24(x) :=

(

a b c d

b c d x

)

, H33 (x) :=





a b c

b c d

c d x



 , H32 :=





b c

c d

d e





and define a matrix-valued function P (A) := I −AA∗, where I is the identity
matrix of the same size as AA∗. We also let

P22(x) := P (H22(x)), P23(x) := P (H23(x)),

P24(x) := P (H24(x)), P33(x) := P (H33(x)), and R23 := P (H32) .

Then, we investigate some connections among the matrices given above:

Lemma 2.5. If 1−a2− b2 > 0 and detP22 (c) = 0, then detP23 (x) ≥ 0 if and

only if x = − bc(a+c)
1−a2−b2

.

Proof. It is a straightforward calculation from

(2) detP22 (c) = 0 ⇐⇒
(

1− a2 − b2
) (

1− b2 − c2
)

= b2 (a+ c)2

and

(3) detP23 (x) = −(1− a2 − b2)

(

x+
bc(a+ c)

1− a2 − b2

)2

.
�

Corollary 2.6. If 1− a2 − b2 − c2 > 0, then the following holds:

(i) for some −1 ≤ x ≤ 1, if detP23(x) = 0, then detP22 (c) ≥ 0;
(ii) for some −1 ≤ x ≤ 1, detP23(x) > 0 if and only if detP22 (c) > 0;
(iii) if detP22 (c) = 0, then there is x such that detP23(x) = 0. Indeed,

x = − bc(a+c)
1−a2−b2

.
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For the next auxiliary results, we observe by Lemma 2.3(iii) that

H33(x) is a HPC ⇐⇒ f1(x) := α1x
2 + β1x+ γ1 ≥ 0;

H24(x) is a HPC ⇐⇒ f2(x) := α2x
2 + β2x+ γ2 ≥ 0,

where the coefficients of f1(x) and f2(x) are

α1 :=− detP22(c)
1−a2−b2−c2

, β1 :=
2(−ac2−b2c3+ac4−2bcd+2b3cd−2abc2d−ab2d2−cd2+a2cd2)

1−a2−b2−c2
,

γ1 :=
(1−b2+ac−c2−d2)

2−(a+c−c3+2bcd−ad2)
2

1−a2−b2−c2
,

α2 := −
(

1− a2 − b2 − c2
)

, β2 := −2d (ab+ bc+ cd), and
γ2 := detP23 (d)− d2

(

1− b2 − c2 − d2
)

, respectively.

Let S+(i) and S−(i) be the solution sets in [−1, 1] of fi(x) ≥ 0 and fi(x) < 0,
respectively, where fi(x) := αix

2 + βix+ γi; αi, βi, γi ∈ R.

Lemma 2.7. If 1 − a2 − b2 − c2 − d2 > 0, then the following statements are

true:
(i) the discriminant β2

1 − 4α1γ1 of the quadratic equation f1(x) is

β2
1 − 4α1γ1 =

4 (detP23 (d))
2

(1− a2 − b2 − c2)
2 ;

(ii) the discriminant β2
2 − 4α2γ2 of the quadratic equation f2(x) is

β2
2 − 4α2γ2 = 4

(

1− a2 − b2 − c2 − d2
)

detP23 (d) .

Proof. It is a straightforward calculation. �

Furthermore, if 1− a2 − b2 − c2 − d2 > 0, then for i = 1, 2, we have

(4) S+ (i) 6= ∅ =⇒ detP23 (d) ≥ 0.

We conclude this section with introducing a helpful tool used in the proof
of main results:

Lemma 2.8. Problem 1.1 is soluble for H4 ≡ H4(a, b, c, d;x, y, z) if and only

if there exists x satisfying both inequalities

(5) ‖H24 (x)‖ ≤ 1 and ‖H33 (x)‖ ≤ 1.

Proof. It is clear from Lemma 2.4. �

3. Partially contractive Hankel matrices of extremal type:

The 4 × 4 case

Since ‖S‖ ≤ ‖T ‖, if S is a submatrix of the matrix T with ‖T ‖ ≤ 1, then S

is again a contraction. Thus, a necessary condition for a partial matrix T to be
a contraction is that each submatrix must be a contraction. We call a partial
matrix meeting this necessary condition a partial contraction (or well-posed

condition).
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In this section, we improve the main results in [8]; Theorem 3.2 given below
covers the results in [8, Theorems 4.2, 4.3, and 4.4] at a time. We need to
introduce another matrices to establish Theorem 3.2; let

H34 (x, y) :=





a b c d

b c d x

c d x y



 and H43 (x, y) :=









a b c

b c d

c d x

d x y









.

Also, let C1 (a, b, c, d) := (a+c)(b+d) (ad− ab− bc− cd) and C2 (a, b, c, d) :=
|(a+ c)(b+ d)| − |ac+ bd|. We next present more concrete conditions for the
solubility of H4 according to the values of d:

Theorem 3.1 ([8]). Assume d = 0. Then, Problem 1.1 is soluble for H4 if

and only if

b(a+ c) = 0.

We also have:

Theorem 3.2. Assume d 6= 0. Then, Problem 1.1 is soluble for H4 if and only

if the following two conditions hold:
(i) C1 (a, b, c, d) ≥ 0 and

(ii) C2 (a, b, c, d) ≥ 0.

Proof. We assume that Problem 1.1 is soluble for H4. Then, by Lemma 2.2
and (5), we have

(6) ‖H33 (x)‖ ≤ 1 if and only if C1 (a, b, c, d) ≥ 0 and C2 (a, b, c, d) ≥ 0.

On the other hand, we assume C1 (a, b, c, d) ≥ 0 and C2 (a, b, c, d) ≥ 0. By
Lemma 2.3, we note

(7)

‖H24 (x)‖ ≤ 1 ⇐⇒ P24 (x) ≥ 0

⇐⇒ x =
ab+ bc+ cd

d
and C1 (a, b, c, d) ≥ 0.

By (5), (7), and (6), we observe that if we choose x such that

|x| =
∣

∣

∣

∣

ab+ bc+ cd

d

∣

∣

∣

∣

≤ |a| ,

then ‖H24 (x)‖ ≤ 1 and ‖H33 (x)‖ ≤ 1, simultaneously. Thus, by Lemma 2.8,
Problem 1.1 is soluble for H4, as desired. �

4. Partially cntractive Hankel matrices of non-extremal type:

The 4 × 4 case

We now pay attention to the non-extremal type for 4 × 4 Hankel matrices
of the form H4 ≡ H4(a, b, c, d;x, y, z) (that is, when a2 + b2 + c2 + d2 < 1).
Consider the solubility of Problem 1.1 for a Hankel matrix H4 which is well-
posed. For i = 1, 2, suppose αi < 0 and βi, γi ∈ R. We recall that S+ (i)
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(resp. S− (i)) ⊆ [−1, 1] is the solution set of the quadratic inequality equation
fi(x) = αix

2 + βix+ γi ≥ 0 (resp. fi(x) < 0). We next let

k1 :=
−c(ac+bd)−(1−a2−b2−c2)

1−a2−b2
and k2 :=

−c(ac+bd)+(1−a2−b2−c2)
1−a2−b2

.

Lemma 4.1. Assume that H33(x) is well-posed, a
2+b2+c2 < 1, and detP22 (c)

= 0. Then, H33(x) is contractive for k1 ≤ x ≤ k2.

Proof. After applying Lemma 2.5, Corollary 2.6, and Theorem 3.2 in [8] to
H33(x), we get the desired results. �

Here, we present one of the main results using the classification according
to the values of detP22 (c):

Theorem 4.2. Assume detP22 (c) = 0. Then, Problem 1.1 is soluble for H4

if and only if

k1 ≤ 2b2c (a+ c)
2

(1− a2 − b2)
2 ≤ k2.

Proof. (=⇒) Suppose that Problem 1.1 is soluble for H4. Then, by (5) and
Lemma 4.1, we have that H33 (x) admits a contractive completion and, in
particular, x is given by

(8) k1 ≤ x ≤ k2.

Since a2 + b2 + c2 + d2 < 1, it follows from (5) and Lemma 2.7 that

(9) ‖H24 (x)‖ ≤ 1 ⇐⇒ detP24 (x) ≥ 0 ⇐⇒ S+ (2) 6= ∅.
Since detP22 (c) = 0, by Lemma 2.5 and Lemma 4.1, we obtain d = − bc(a+c)

1−a2−b2
.

Note
β2
2 − 4α2γ2 = 4

(

1− a2 − b2 − c2 − d2
)

detP23 (d) = 0,

which leads to

(10) S+ (2) 6= ∅ ⇐⇒ x =
2b2c (a+ c)

2

(1− a2 − b2)
2 .

Therefore, by (8), (9), and (10), H4 admits a contractive completion only if

k1 ≤ 2b2c (a+ c)2

(1− a2 − b2)
2 ≤ k2,

as desired.
(⇐=) Suppose that k1 ≤ 2b2c(a+c)2

(1−a2−b2)2
≤ k2. Put x := 2b2c(a+c)2

(1−a2−b2)2
. Then, the

proof of Lemma 4.1 allows us to see

(11) ‖H33 (x)‖ ≤ 1.

By (10), we also have S+ (2) 6= ∅. Next, by (9), we also obtain

(12) ‖H24 (x)‖ ≤ 1.

Therefore, by (5), (11), and (12), we know thatH4 has a contractive completion.
�
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We next have:

Theorem 4.3. Assume detP22 (c) > 0. Then, Problem 1.1 is soluble for H4

if and only if

S+ (1) ∩ S+ (2) 6= ∅.
Proof. (=⇒) Suppose that Problem 1.1 is soluble for H4. Then, by (5), we
have

(13)
‖H33 (x)‖ ≤ 1 ⇐⇒ P3 (H33 (x)) ≥ 0

⇐⇒ detP23 (d) ≥ 0 and detP3 (H33 (x)) ≥ 0,

which implies S+ (1) 6= ∅. Since a2 + b2 + c2 + d2 < 1, by Lemma 2.7, we
observe that the discriminant β2

2 −4α2γ2 of the quadratic equation f2(x) is not
negative. Thus, we get

(14) ‖H24 (x)‖ ≤ 1 ⇐⇒ S+ (2) 6= ∅.
Therefore, by (13) and (14), we have S+ (1) ∩ S+ (2) 6= ∅, as desired.

(⇐=) Suppose that S+ (1) ∩ S+ (2) 6= ∅. Then, both sets S+ (1) and S+ (2)
are non-empty. Since a2+b2+c2+d2 < 1, it follows from (4) that detP23 (d) ≥
0.

By Lemma 2.7 again, we can see that the discriminant of the quadratic
equation f1(x) is nonnegative. That is,

β2
1 − 4α1γ1 =

4 (detP23 (d))
2

(1− a2 − b2 − c2)
2 ≥ 0.

Due to detP3 (H33 (x)) = f1(x), we know

(15) detP3 (H33 (x)) ≥ 0 ⇐⇒ S+ (1) 6= ∅.
Since S+ (2) 6= ∅, (14) leads us to see

(16) ‖H24 (x)‖ ≤ 1.

Therefore, by (5), (14), (15), and (16), we conclude that H4 admits a contrac-
tive completion. �

5. Partially contractive Hankel matrices of extremal type:

The 5 × 5 case

In this section, we focus on the extremal case for H5 = H(a, b, c, d, e;x, y, z,
w). Our approach requires that we split the analysis into two cases (e = 0
and e > 0), because we get a similar result using the repeated calculations in
the proofs of Theorems 5.2, 5.3, 5.4, and 5.5 given below for the case e < 0.
Consider the solubility of Problem 1.1 for a Hankel matrix H5, which is well-
posed. By Lemma 2.4 and Lemma 2.8, we first observe that Problem 1.1 is
soluble for H5 if and only if there exist x and y such that we simultaneously
have

(17) ‖H25 (x)‖ ≤ 1, ‖H34 (x)‖ ≤ 1, ‖H35 (x, y)‖ ≤ 1, and ‖H44 (x, y)‖ ≤ 1,
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where

H25 (x) :=

(

a b c d e

b c d e x

)

, H34 (x) :=





a b c d

b c d e

c d e x



 ,

H35 (x, y) :=





a b c d e

b c d e x

c d e x y



 , and H44 (x, y) :=









a b c d

b c d e

c d e x

d e x y









.

To obtain our results, we let

P25(x) := P (H25(x)), P34(x) := P (H34(x)),
P35(x) := P (H35(x)), and P44(x) := P (H44(x)).

We have relied heavily on the Nested Determinant Test so far for checking
positivity of matrices; however, we need to use different approaches in this
section: For matrices A,B ∈ Mn(C), we let A ◦B denote their Schur product,
where (A ◦B)i,j := (A)i,j (B)i,j for 1 ≤ i, j ≤ n. The following result is

well known: If A ≥ 0 and B ≥ 0, then A ◦ B ≥ 0 [21]. Recall that two
matrices A,B ∈ Mn(R) are called congruent if there exists an invertible matrix
Q ∈ Mn(R) such that B = QTAQ. The following result is also well known:
A ≥ 0 ⇐⇒ QTAQ ≥ 0 [15]; the facts will be used to prove Theorem 5.5.

We are ready to consider the first case:

The case e = 0. Using the Nested Determinants Test in Lemma 2.1
and eliminating the common factors in matices P25 (x), P34 (x), P35 (x, y) and
P44 (x, y), respectively, we can show

‖H25 (x)‖ ≤ 1 ⇐⇒ {|x| ≤ |a| and ab+ bc+ cd = 0 ,(18)

‖H34 (x)‖ ≤ 1 ⇐⇒







ab+ bc+ cd = ac+ bd+ dx = 0 and

A (x) :=

(

a2 ab

ab a2 + b2 − x2

)

≥ 0,
(19)

‖H35 (x, y)‖ ≤ 1 ⇐⇒







ab+ bc+ cd = ac+ bd+ dx = 0 and

B (x, y) :=

(

a2 − x2 ab− xy

ab− xy a2 + b2 − x2 − y2

)

≥ 0,

(20)

and

‖H44 (x, y)‖ ≤ 1(21)

⇐⇒















ac+ bd+ dx = ad+ cx+ dy = 0 and

C (x, y) :=





a2 −c (b+ d) ac

−c (b+ d) a2 + b2 − x2 −cd− xy

ac −cd− xy 1− d2 − x2 − y2



 ≥ 0.

Then, we have:



1012 IN HYOUN KIM, SEONGUK YOO, AND JASANG YOON

Theorem 5.1. Assume e = 0. Then, Problem 1.1 is soluble for H5 if and only

if one of the following two conditions holds:
(i) d = 0 and ac = b (a+ c) = 0;
(ii) d 6= 0, ab+ bc+ cd = 0, and |ac+ bd| ≤ |ad|.

Proof. (=⇒) We assume that Problem 1.1 is soluble for H5. Then, by (18), we
see at once ab+ bc+ cd = 0 and |x| ≤ |a|.

Subcase d = 0. By (19), we have ac = 0.
If a = c = 0, then we have b (a+ c) = 0.
If a = 0 and c 6= 0, then by (20), b = 0, so that b (a+ c) = 0.
If a 6= 0 and c = 0, then by (20) again, b = 0. Thus, we have b (a+ c) = 0.

Therefore, we have the desired conditions.
Subcase d 6= 0. By (19), we must choose x = −ac−bd

d
. Thus, we have

ab+ bc+ cd = 0 and A
(−ac−bd

d

)

≥ 0 ⇐⇒ |ac+ bd| ≤ |ad|.
Since x = −ac−bd

d
, by (21), we have y = ac2+bcd−ad2

d2 . Hence, we have the
desired conditions.

(⇐=) Suppose that the condition (i) holds. For any x with |x| ≤ |a|, the
conditions (18) and (19) are satisfied. If a = c = 0, then by (20), we get
x = 0 and |y| = 1. Hence, direct calculations show ‖H35 (0,±1)‖ ≤ 1 and
‖H44 (0,±1)‖ ≤ 1.

If a = 0 and c 6= 0, then by (19) and (20), we have x = y = 0 which show
‖H35 (0, 0)‖ ≤ 1 and‖H44 (0, 0)‖ ≤ 1.

If a 6= 0 and c = 0, then by (20) and (21), we have |x| ≤ 1 and |y| ≤
(

1− x2
)

which hold B (x, y) ≥ 0 and C (x, y) ≥ 0, simultaneously. Therefore, we have
‖H35 (x, y)‖ ≤ 1 and ‖H44 (x, y)‖ ≤ 1. In each case given above, Problem 1.1
is soluble for H5.

Suppose that the condition (ii) holds. Put x = −ac−bd
d

. Then, we obtain
∥

∥H25

(−ac−bd
d

)∥

∥ ≤ 1 and
∥

∥H34

(−ac−bd
d

)∥

∥ ≤ 1. We also put y = ac2+bcd−ad2

d2 .
Then, the Nested Determinants Test in Lemma 2.1 implies
∥

∥

∥H35

(

−ac−bd
d

, ac2+bcd−ad2

d2

)∥

∥

∥ ≤ 1 and
∥

∥

∥H44

(

−ac−bd
d

, ac2+bcd−ad2

d2

)∥

∥

∥ ≤ 1,

because detB
(

−ac−bd
d

, ac2+bcd−ad2

d2

)

=detC
(

−ac−bd
d

, ac2+bcd−ad2

d2

)

=0. Thus,

the conditions (18), (19), (20), and (21) hold. Therefore, by (17), Problem 1.1
is also soluble for H5, so that our proof is complete. �

The case e > 0. Direct calculations (i.e., the Nested Determinants Test
in Lemma 2.1 and eliminating the common factors in matices P25 (x), P34 (x),
P35 (x, y) and P44 (x, y)) imply

(22) ‖H25 (x)‖ ≤ 1 ⇐⇒ x = −ab+bc+cd+de
e

and |x| ≤ |a| ,

‖H34 (x)‖ ≤ 1(23)
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⇐⇒
(

a2e2−(ab+bc+cd+de)2

e2
m (x)

m (x)
(a2+b2−x2)e2−(ac+bd+ce+dx)2

e2

)

≥ 0,

‖H35 (x, y)‖ ≤ 1(24)

⇐⇒











x = −ab+bc+cd+de
e

, y = abd+bcd+cd2+d2e−ace−bde−ce2

e2
,

(

a2 − x2 ab− xy

ab− xy a2 + b2 − x2 − y2

)

≥ 0,

and

(25) ‖H44 (x, y)‖ ≤ 1 ⇐⇒ M :=





f (x) g (x, y) h (x, y)
g (x, y) j (x, y) k (x, y)
h (x, y) k (x, y) ℓ (x, y)



 ≥ 0,

where

m (x) := e2(bc+cd+de+ex)−(ab+bc+cd+de)(ac+bd+ce+dx)
e2

,

f (x) := a2 − x2, g (x, y) := ab− xy, j (x, y) := a2 + b2 − x2 − y2

h (x, y) := ace+adx+bex+dxy
e

, k (x, y) := abe+bce+ady+bey+cxy−exy+dy2

e
, and

ℓ (x, y) :=
a2e2−a2d2+c2e2−abde−2c(ad+be)x−(c2+e2)x2−2d(ad+be+cx)y−(d2+e2)y2

e2
.

Then, we have:

Theorem 5.2. Assume e > 0 and a = 0. Then, Problem 1.1 is soluble for H5

if and only if the following two conditions hold:
(i) bc+ cd+ de = 0 and

(ii) |bd+ ce| ≤ |be|.

Proof. (=⇒) We suppose that Problem 1.1 is soluble for H5. Since a = 0, by
(22), we have x = 0 and bc+ cd+ de = 0. By (23), we note the following:

(26) ‖H34 (x)‖ ≤ 1 ⇐⇒ |bd+ ce| ≤ |be| .
Therefore, we have two desired conditions.

(⇐=) Suppose that the two conditions bc+ cd+ de = 0 and |bd+ ce| ≤ |be|
hold. Put x = 0. Then, by (26), we have ‖H34 (0)‖ ≤ 1. Put y = − bd+ce

e
.

Then, a direct calculation shows
∥

∥H35

(

0,− bd+ce
e

)∥

∥ ≤ 1.

If c = 0, then d = y = 0 and by (25), we have ‖H44 (0, 0)‖ ≤ 1.

If c 6= 0, then b = −d(c+e)
c

, so
∥

∥H44

(

0,− bd+ce
e

)∥

∥ ≤ 1. Thus, by the analysis
given above, the conditions (22), (23), (24), and (25) hold. Therefore, by (17),
Problem 1.1 is soluble for H5. �
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We define s := ab+ bc+ cd+ de+ ea and this notation is to be used in the
next three theorems. Note

‖H25 (x)‖ ≤ 1 ⇐⇒ x = −s− ea

e
and |x| ≤ |a| .

Then, we have:

Theorem 5.3. Assume e > 0, a 6= 0, and s = 0. Then, Problem 1.1 is soluble

for H5 if and only if the following three conditions hold:
(i) a+ d 6= 0;
(ii) b = c;
(iii) ab+ bd+ da = 0.

Proof. (=⇒) We suppose that Problem 1.1 is soluble for H5. By (22), we must
choose x = a. By (23), we have be = ac+bd+ce+da. By (24), we must choose
y = b.

If a + d = 0, then ab + bc + cd = 0 ⇐⇒ ac = b (a+ c). By (25), we have
ac = bc. Since ac = b (a+ c) and a 6= 0, we have b = c = 0 which implies a = 0.
Note that our assumption is a 6= 0, so that a = 0 contradicts our assumption.
Therefore, a = −d case does not occur.

If a+ d 6= 0. Then, by (25) we have b = c which implies be = ac+ bd+ ce+
da ⇐⇒ ab+ bd+ da = 0. Thus, we have three desired conditions.

(⇐=) Suppose that the conditions (i), (ii), (iii) hold. Choose x = a and
y = b. Since e > 0 and s = 0, by the Nested Determinants Test in Lemma
2.1, we have ‖H25 (a)‖ ≤ 1, ‖H34 (a)‖ ≤ 1, ‖H35 (a, b)‖ ≤ 1, and ‖H44 (a, b)‖ ≤
1. Thus, the conditions (22), (23), (24), and (25) hold. Therefore, by (17),
Problem 1.1 is soluble for H5. �

Theorem 5.4. Assume e > 0, a 6= 0, and s = 2ea. Then, Problem 1.1 is

soluble for H5 if and only if one of the following three conditions hold:
(i) a− d 6= 0;
(ii) b = 0;
(iii) ad = c (a+ e).

Proof. (=⇒) We suppose that Problem 1.1 is soluble for H5. Then, by (22),
we must choose x = −a.

If a = d, then we have ab + bc + cd = 0. Thus, by (23), we obtain a2 =
ab+ac+be+ce. By (24), we must choose y = b and obtain a2 = ab+ac−be+ce.
Thus, we have b = 0 which implies cd = 0 and a2 = c (a+ e). Since a 6= 0, that
is, d 6= 0, cd = 0 =⇒ c = 0 which means a = 0. Note that our assumption is
a 6= 0, so that a = 0 contradicts our assumption. Therefore, a = d case does
not occur.

If a 6= −d, then, by (23), we have ad = ac+ bd− be+ ce. By (24), we must
choose y = b and have ad = ac + bd + be + ce. Thus, we have b = 0 which
implies ad = c (a+ e).

(⇐=) Suppose that the conditions (i), (ii), (iii) hold. Choose x = −a and
y = b. Then, direct calculations show that H25 (−a) = 0 and H34 (−a) = 0,
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where 0 is a zero matrix. Since e > 0 and s = 2ea, we have ‖H35 (−a, b)‖ ≤ 1.

Since a 6= 0, we note d = c(a+e)
a

and s− 2ea = 0 =⇒ ac2−a2e+ace+c2e+ce2

a
= 0.

By the Nested Determinants Test in Lemma 2.1, we obtain ‖H44 (−a, b)‖ ≤ 1.
Therefore, the conditions (22), (23), (24), and (25) also hold. Hence, by (17),
Problem 1.1 is soluble for H5. �

For the next result, let t := ac + ad + bd + be + ce and v := ac − ad +
2ae + bd − be + ce − s. We also let w1 (s) := s2 − (ad + 2ae + be)s + aet and
w2 (s) := s2 + (ad− 2ae+ be)s− aet, where s = ab+ bc+ cd+ de+ ea. Then,
we have:

Theorem 5.5. Assume e > 0, a 6= 0, s 6= 0, and s 6= 2ea. Then, Problem 1.1

is soluble for H5 if and only if the following three conditions hold:
(i) s (2ae− s) > 0;
(ii) w1 (s)w2 (s) ≥ 0;
(iii) v(s+ t) ≥ 0.

Proof. (=⇒) Suppose that Problem 1.1 is soluble for H5. By (22) and the
assumption given above, we must choose x = ae−s

e
. Note

(27) ‖H34 (x)‖ ≤ 1 ⇐⇒
(

1
e2

1
e3

1
e3

1
e4

)

◦ L (x) ≥ 0,

where ◦ means the Schur product,

L (x) :=

(

ℓ11 ℓ12 (x)
ℓ21 (x) ℓ22 (x)

)

, ℓ11 := s (2ae− s),

ℓ12 (x) = ℓ21 (x) := ae (t− ad)− (ac+ bd+ ce) s+ (ae− s) dx, and

ℓ22 (x) := −(d2 + e2)x2 − 2(ac+ bd+ ce)dx
−a2c2 − 2abcd− b2d2 − 2ac2e− 2bcde+ a2e2 + b2e2 − c2e2.

Since

(

1

e
2

1

e
3

1

e
3

1

e
4

)

≥ 0, we get ‖H34 (x)‖ ≤ 1 ⇐⇒ L (x) ≥ 0. A direct calcula-

tion shows that

(28)

∥

∥H34

(

ea−s
e

)∥

∥ ≤ 1

⇐⇒ L

(

ea− s

e

)

≥ 0

⇐⇒ (2ae− s)s ≥ 0 and detL
(

ea−s
e

)

= w1 (s)w2 (s) ≥ 0.

By (24), we must choose y = −ace+ade+bde+ce2−ds
e2

. Note

(29)
∥

∥

∥H35

(

ea−s
e

,−ace+ade+bde+ce2−ds
e2

)∥

∥

∥ ≤ 1 ⇐⇒ w1 (s)w2 (s) ≥ 0.
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Thus, we have

(30)

‖H44 (x, y)‖ ≤ 1

⇐⇒
(

M11 M12 (x, y)
M21 (x, y) M22 (x, y)

)

≥ 0

⇐⇒ Z (x, y) := M22 (x, y)−M21 (x, y) (M11)
†
M12 (x, y) ≥ 0,

where (M11)
†
is the Moore-Penrose inverse of M11,

M11 :=

(

1− a2 − b2 − c2 − d2 −ab− bc− cd− de

−ab− bc− cd− de 1− b2 − c2 − d2 − e2

)

,

M12 (x, y) = M21 (x, y) :=

(

−ac− bd− ce− dx −ad− be− cx− dy

−ad− be− cx− dy −bd− ce− dx− ey

)

,

and M22 (x, y) :=

(

1− c2 − d2 − e2 − x2 −cd− de − ex− xy

−cd− de− ex− xy 1− d2 − e2 − x2 − y2

)

.

Now, we consider a congruence for the positivity of two matrices:

Z
(

ea−s
e

,−ace+ade+bde+ce2−ds
e2

)

≥ 0(31)

⇐⇒ QTZ
(

ea−s
e

,−ace+ade+bde+ce2−ds
e2

)

Q ≥ 0,

where Q :=
(

e 0
0 e2

)

. Hence, by (31), we obtain

(32)

∥

∥

∥
H44

(

ea−s
e

,−ace+ade+bde+ce2−ds
e2

)∥

∥

∥
≤ 1

⇐⇒ QTZ
(

ea−s
e

,−ace+ade+bde+ce2−ds
e2

)

Q ≥ 0

⇐⇒
(

n11 n12

n21 n22

)

≥ 0

⇐⇒ w1(s)w2(s)
s(2ae−s) ≥ 0 and s (2ae− s) v(s+ t) ≥ 0,

where

n11 := w1(s)w2(s)
s(2ae−s) , n12=n21 := −w1(s)(ds2+(ad2−ace−2ade−ce2)s+a(e−d)et)

s(2ae−s) , and

n22 :=
w1(s)((d2+e2)s2−(de(2ac+2ad+bd−ae+2ce)+(2a−b)e3−ad3)s−aet(e−d)2)

(2ae−s)s .

Therefore, (28), (29), and (32) satisfy the conditions (i), (ii), (iii).
(⇐=) Suppose that all of the following three conditions (i), (ii), (iii) hold.

We first choose

x =
ea− s

e
and y = −ace+ ade+ bde+ ce2 − ds

e2
.

Then, by (27), (28), and (29), ‖H25 (x)‖ ≤ 1, ‖H34 (x)‖ ≤ 1, and ‖H35 (x, y)‖ ≤
1 are satisfied. By (32), ‖H44 (x, y)‖ ≤ 1 also holds. Therefore, by (17), we
have that Problem 1.1 is soluble for H5, as desired. �
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6. Applications: examples and an answer to a conjecture

It is well known that Problem 1.1 is always soluble for H3 ≡ H3(a, b, c;x, y),
and that there exist real numbers a, b, c, d such that H4 ≡ H4(a, b, c, d;x, y, z)
is partially contractive but not contractive for all choices of x, y, z; in both
instances, the results are theoretical in nature [18]. In [8, Example 5.2], the
authors give concrete real numbers a, b, c, d such that H4 is the extremal type
and partially contractive but not contractive for any choices of x, y, z. In this
section, we provide concrete examples in both extremal and non-extremal types
for H4(a, b, c, d;x, y, z) and H5(a, b, c, d, e;x, y, z, w) which are not soluble for
any x, y, z, w.

Example 6.1. For a ∈
(

0, 1
2

)

, we let (a, b, c, d) =

(

a,
√

1
2 ,

√

1−2a2

2 , 0

)

. Then,

we have

a2 + b2 + c2 + d2 = 1.

Furthermore, we can see that H4 is partially contractive but not contractive
for any choices of x, y, z.

Proof. By Theorem 3.1, a2 + b2 + c2 + d2 = 1 and b(a + c) = 2a+
√
2−4a2

2
√
2

6= 0

imply that H4 is not soluble for any x, y, z. �

Example 6.2. For a ∈
(

0, 1
3

)

, we let (a, b, c, d) =

(

a,
√

1
2 ,

√

1−3a2

2 , 0

)

. Then,

we have

a2 + b2 + c2 + d2 < 1.

Furthermore, we can have that H4 is partially contractive but not contractive
for any choices of x, y, z.

Proof. Note a2 + b2 + c2 + d2 < 1, detP22 (c) > 0, and detP23 (0) < 0 on
(

0,
√

1
3

)

. Thus, Lemma 4 and Theorem 4.3 imply that H4 is not soluble for

any x, y, z. �

It is about to introduce concrete examples for H5 ≡ H5(a, b, c, d, e;x, y, z, w)
which is not soluble for any x, y, z, w. We first consider the extremal type for
H5.

Example 6.3. For b ∈ (0, 1), we let (a, b, c, d, e) =
(

0, b,
√
1− b2, 0, 0

)

. Then,
we have

a2 + b2 + c2 + d2 + e2 = 1.

Furthermore, we can have that H5 is partially contractive but not contractive
for any choices of x, y, z, w.

Proof. Since (a, b, c, d, e) =
(

0, b,
√
1− c2, 0, 0

)

, it is clear that a2 + b2 + c2 +

d2 + e2 = 1. A direct calculation shows ab + bc > 0, so that by Theorem 4.3,
H5 is not soluble for any x, y, z, w. �
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We next consider the non-extremal type for H5. For this, we let ρ := a2 +
b2 + c2 + d2 + e2 < 1 and σ := ac+ bd+ ce. Also, let

α5 := ρ− 1− e2, α6 := − detP23 (d) , β5 := 2e(ea− s),

β6 := 2dσ
(

ρ− 1− a2
)

− 2abe
(

ρ− 1− e2
)

,

γ5 := e2(ρ− 1− a2) + detP24 (e) , and

γ6 := σ2
(

ρ− 1− a2
)

−
(

ρ− 1− e2
) (

detR23 + e
(

1− c2 − d− e2
))

.

Recall the algebraic set S+(i) and the function fi(x) from Section 2. Then, we
have:

Theorem 6.4. Let s−ea = ab+bc+cd+de = 0. Then, Problem 1.1 is soluble

for H5 only if S+ (5) ∩ S+ (6) 6= ∅.
Proof. Since s− ea = 0, Lemma 2.2 implies

(33)

‖H25 (x)‖ ≤ 1

⇐⇒ f5(x) ≥ 0

⇐⇒ −
√

(1− ρ) detP24 (e)

e2 − ρ
≤ x ≤

√

(1− ρ) detP24 (e)

e2 − ρ

and

(34)

‖H34 (x)‖ ≤ 1

⇐⇒ f6(x) ≥ 0

⇐⇒−β6 −
√

β2
6 − 4α6γ6

α6
≤ x ≤ −β6 +

√

β2
6 − 4α6γ6

α6
,

where β2
6 − 4α6γ6 ≥ 0. Thus, by (33) and (34), we have that Problem 1.1 is

soluble for H4 only if S+ (5) ∩ S+ (6) 6= ∅. �

Next, we have:

Example 6.5. For a ∈
(

0, 15
)

, we let (a, b, c, d, e) =
(

a, 0, 34 , 0,
1
10

)

. Then, we
have

a2 + b2 + c2 + d2 + e2 < 1.

Furthermore, we can see that H5 is partially contractive but not contractive
for any choices of x, y, z, w.

Proof. Since (a, b, c, d, e) =
(

a, 0, 34 , 0,
1
10

)

and a ∈
(

0, 15
)

, it is clear that a2 +

b2 + c2 + d2 + e2 < 1. A direct calculation shows detP24 (e) < 0, so that by
(33), we get S+ (5) = ∅. Thus, by Theorem 6.4, H5 is not soluble for any
x, y, z, w. �

We now conclude this section with giving a negative answer to the conjecture
presented in [8, Remark 4.5]; the authors expected that the solution set of
Problem 1.1,

(35)
{

(x, y, z) ∈ R
3 : H4 ≡ H4(a, b, c, d;x, y, z) is contractive

}

,
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is a prism in R3 when (a, b, c, d) is not extremal. However, we can show that
there is a solution set which is other than a prism.

z = g1(y)

z = g2(y)

Figure 1. The solution set as in (36).

Example 6.6. The solution set S of Problem 1.1 for H4,

(36) S :=

{

(x, y, z) ∈ R
3 : H4 ≡ H4

(

1

10
,
1

8
,
1

4
,
1

2
; 0, y, z

)

is contractive

}

,

is not a polygon in yz-plane (see Figure 1), so S is not a prism.

Proof. We first note a2 + b2 + c2 + d2 = 541
1600 < 1, that is, (a, b, c, d) is not

extremal. Direct calculations show

detP22 (c) =
18357
20480 , f1(x) = − 91785

93376x
2 − 10231

46688x+ 4731
11672 ,

f2(x) = − 1459
1600x

2 − 27
160x+ 42621

102400 .

Thus, after solving the following system of inequalities
{

f1(x) ≥ 0
f2(x) ≥ 0,

we have
S+(1) ∩ S+(2) =

{

x : − 332
435 ≤ x ≤ 114

211

}

6= ∅
which implies that H4 ≡ H4

(

1
10 ,

1
8 ,

1
4 ,

1
2 ;x, y, z

)

is soluble by Theorem 4.3. To
investigate the solution set as in (35) in detail, we put x = 0 and check the
positive semi-definiteness of the matrix I−H∗

4H4. By the Nested Determinants
Test in Lemma 2.1, we can see

(37) I −H∗
4H4 ≥ 0 ⇐⇒ h1 (y, z)h2 (y, z) ≤ 0,
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where h1 (y, z) := 332z −
(

435y2 − 80y − 252
)

and h2 (y, z) := 114z − (−211y2

−80y + 74. We now observe that if the solution set as in (35) is a prism,
then the projection of the solution set as in (35) onto the yz-plane must be a
polygon. We let

g1(y) :=
435y2−80y−252

332 and g2(y) :=
−211y2−80y+74

114 .

Then, the solution to the inequality h1 (y, z)h2 (y, z) ≤ 0 is

g1(y) ≤ z ≤ g2(y) or g2(y) ≤ z ≤ g1(y)

which depends on the sign of the difference between g1(y) and g2(y). Indeed,
if y1 ≤ y ≤ y2, where

y1 :=
2(−2180−3

√
44808878)

59821 and y2 :=
2(−2180+3

√
44808878)

59821 ,

then we have g1(y) ≤ g2(y), so that the set

{(y, z) : g1(y) ≤ z ≤ g2(y)}
solves the inequality h1 (y, z)h2 (y, z) ≤ 0. On the other hand, if −1 ≤ y ≤ y1
or y2 ≤ y ≤ 1, then we have g2(y) ≤ g1(y), and hence the set

{(y, z) : g2(y) ≤ z ≤ g1(y)}
is the solution of the inequality h1 (y, z)h2 (y, z) ≤ 0. After summarizing the
explanation just given above to the solution set as in (36), we obtain Figure
1. As shown in Figure 1, the projection of the solution set as in (35) is not a
polygon. Therefore, the solution set as in (35) is not a prism, as desired. �
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