• Title/Summary/Keyword: semi-empirical model

Search Result 182, Processing Time 0.025 seconds

Carbon dioxide absorption characteristics according to amine mixtures with different order (급수가 다른 아민 혼합에 따른 이산화탄소 흡수 특성)

  • Choi, Soo-Hyun;You, Jong-Kyun;Park, Ki-Tae;Baek, Il-Hyun;Park, So-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4635-4642
    • /
    • 2013
  • The advanced absorbent that used amine mixture with different order were developed to separate carbon dioxide emitted from fossil fuel power plant. The carbon dioxide absorption capacity for mixtures with different amine(primary, secondary and tertiary) were investigated according to $CO_2$ partial pressure. The carbon dioxide absorption capacity at the same pressure is ordered as 3DMA1P 30wt%>3DMA1P 27wt%+MEA 3wt%>3DMA1P 27wt%+DEA 3wt%. The result indicates that mixing tertiary amine with primary amine yields more efficient carbon dioxide absorbent than mixing tertiary with secondary amine does. Finally, the predicted semi-empirical gas-liquid equilibrium model fitted with experimental results.

Extended Range of a Projectile Using Optimization of Body Shape (비행탄두 형상 최적화를 이용한 사거리 증대 연구)

  • Kim, Jinseok
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.49-55
    • /
    • 2020
  • A goal of improving projectile is to increasing achievable range. The shape of a projectile is generally selected on the basis of combined aerodynamics and structural considerations. The choice of body, nose and boattail shape has a large effect on aerodynamic design. One of the main design factors that affect projectile configuration is aerodynamic drag. The aerodynamic drag refers to the aerodynamic force that acts opposite to the relative motion of a projectile. An investigation was made to predict the effects of nose, boattail and body shapes on the aerodynamic characteristics of projectiles using a semi-empirical technique. A parametric study is conducted which includes different projectile geometry. Performance predictions of achievable range are conducted using a trajectory simulation model. The potential of extending the range of a projectile using optimization of projectile configuration is evaluated. The maximum range increase is achieved due to the combination of optimal body shapes.

Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling

  • Golpasand, Mohammad-Reza B.;Do, Ngoc Anh;Dias, Daniel;Nikudel, Mohammad-Reza
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.643-654
    • /
    • 2018
  • Tunnel excavation leads to a disturbance on the initial stress balance of surrounding soils, which causes convergences around the tunnel and settlements at the ground surface. Considering the effective impact of settlements on the structures at the surface, it is necessary to estimate them, especially in urban areas. In the present study, ground settlements due to the excavation of East-West Line 7 of the Tehran Metro (EWL7) and the Abuzar tunnels are evaluated and the effect of the lateral earth pressure coefficient ($K_0$) on their extension is investigated. The excavation of the tunnels was performed by TBMs (Tunnel Boring Machines). The coefficient of lateral earth pressure ($K_0$) is one of the most important geotechnical parameters for tunnel design and is greatly influenced by the geological characteristics of the surrounding soil mass along the tunnel route. The real (in-situ) settlements of the ground surface were measured experimentally using leveling methods along the studied tunnels and the results were compared with evaluated settlements obtained from both semi-empirical and numerical methods (using the finite difference software FLAC3D). The comparisons permitted to show that the adopted numerical models can effectively be used to predict settlements induced by a tunnel excavation. Then a numerical parametric study was conducted to show the influence of the $K_0$ values on the ground settlements. Numerical investigations also showed that the shapes of settlement trough of the studied tunnels, in a transverse section, are not similar because of their different diameters and depths of the tunnels.

The Comparative Estimation of Soil Erosion for Andong and Imha Basins using GIS Spatial Analysis (GIS 공간분석을 이용한 안동·임하호 유역의 토사유실 비교 평가)

  • Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.341-347
    • /
    • 2006
  • Geographically Imha basin is adjacent to Andong basin, but the occurrence of turbid water in each reservoir by storm events shows big differences. Hence, it is very important to identify the reason for these large differences. This study compared and analyzed soil erosion using the semi-empirical soil erosion model, RUSLE for both Imha and Andong basin, especially with emphasis on high-density turbid water. The agricultural district, which is the most vulnerable to soil erosion, was intensively analyzed based on land cover map produced by Ministry of Environment. As a result, the portion of the agricultural area is 11.88% for Andong basin, while it is 14.95% for Imha basin. Also all RUSLE factors excepts practice factor turned out to be higher for Imha basin. This means that the basin characteristics such as soil texture, terrain, and land cover for Imha basin is more vulnerable to soil erosion. Estimation of soil erosion by RUSLE for Andong and Imha basin is 1,275,806 ton and 1,501,608 ton, respectively, showing higher soil erosion by 225,802 ton for Imha basin.

A Theoretical Study for Estimation of Oxygen Effect in Radiation Therapy (방사선 조사시 산소가 세포에 미치는 영향의 이론적 분석)

  • Rena J. Lee;HyunSuk Suh
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 2000
  • Purpose: For estimation of yields of l)NA damages induced by radiation and enhanced by oxygen, a mathematical model was used and tested. Materials and Methods: Reactions of the products of water radiolysis were modeled as an ordinary time dependant equations. These reactions include formation of radicals, DNA damage, damage repair, restitution, and damage fixation by oxygen and H-radical. Several rate constants were obtained from literature while others were calculated by fitting an experimental data. Sensitivity studies were performed changing the chemical rate constant at a constant oxygen number density and varying the oxygen concentration. The effects of oxygen concentration as well as the damage fixation mechanism by oxygen were investigated. Oxygen enhancement ratio(OER) was calculated to compare the simulated data with experimental data. Results: Sensitivity studies with oxygen showed that DNA survival was a function of both oxygen concentration and the magnitude of chemical rate constants. There were no change in survival fraction as a function of dose while the oxygen concentration change from 0 to 1.0 x 10$^{7}$ . When the oxygen concentration change from 1.0 $\times$ 107 to 1.0 $\times$ 101o, there was significant decrease in cell survival. The OER values obtained from the simulation study were 2.32 at 10% cell survival level and 1.9 at 45% cell survival level. Conclusion: Sensitivity studies with oxygen demonstrated that the experimental data were reproduced with the effects being enhanced for the cases where the oxygen rate constants are largest and the oxygen concentration is increased. OER values obtained from the simulation study showed good agreement for a low level of cell survival. This indicated that the use of the semi-empirical model could predict the effect of oxygen in cell killing.

  • PDF

Improvement of Model based on Inherent Optical Properties for Remote Sensing of Cyanobacterial Bloom (고유분광특성을 이용한 남조류 원격 추정 모델 개선)

  • Ha, Rim;Nam, Gibeom;Park, Sanghyun;Kang, Taegu;Shin, Hyunjoo;Kim, Kyunghyun;Rhew, Doughee;Lee, Hyuk
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.111-123
    • /
    • 2017
  • The phycocyanin pigment (PC) is a marker for cyanobacterial presence in eutrophic inland water. Accurate estimation of low PC concentration in turbid inland water is challenging due to the optical complexity and criticalforissuing an early warning of potentialrisks of cyanobacterial bloom to the public. To monitor cyanobacterial bloom in eutrophic inland waters, an approach is proposed to partition non-water absorption coefficient from measured reflectance and to retrieve absorption coefficient of PC with the aim of improving the accuracy in remotely estimated PC, in particular for low concentrations. The proposed inversion model retrieves absorption spectra of PC ($a_{pc}({\lambda})$) with $R^2{\geq}0.8$ for $a_{pc}(620)$. The algorithm achieved more accurate Chl-a and PC estimation with $0.71{\leq}R^2{\leq}0.85$, relative root mean square error (rRMSE) ${\leq}39.4%$ and mean relative error(RE) ${\leq}78.0%$ than the widely used semi-empirical algorithm for the same dataset. In particular, low PC ($PC{\leq}50mg/m^3$) and low PC: Chl-a ratio values of for all datasets used in this study were well predicted by the proposed algorithm.

Duration to First Job of Korean Young Graduates: Before and After the Economic Crisis (청년층의 첫 일자리 진입 : 경제위기 전후의 비교)

  • Ahn, Joyup;Hong, Seo Yeon
    • Journal of Labour Economics
    • /
    • v.25 no.1
    • /
    • pp.47-74
    • /
    • 2002
  • Since the Economic Crisis at the end of 1997, unemployment rate soared up to the record-high 8.6% (February 1999) and, for youth aged 15~29, it was 14.6% (27.8% for aged 15~19). In spite of economic recovery after the crisis, new participants in labor market at the school-to-work transition have faced with difficulties in finding their first jobs and, even further, the ratio of youth at out-of the labor force but not in school has remained at a higher level. It is important to calibrate the negative effects of nonemployment in the short-run as well as in the long-run, but there has been few study on the school-to-work transition in Korea. This study focus on the nonemployment duration to first job after formal education and comparison of its pattern before and after the crisis. A proportional hazard model, considering job prenaration before graduation (21.4% of the sample), with the semi-parametric baseline hazard is applied to the sample from the Korean Labor and Income Panel Survey(1998~2000) and its Youth Supplemental survey(2000). Interview of the Survey is conducted, by the Korea Labor Institute, to the same 5,000 household and 13,738 individual sample, guaranteeing nationwide representativeness. The Supplemental Survey consists of 3,302 young individuals aged 15 to 29 at the time of survey and 1,615 of them who are not in school and provide appropriate information is used for the analysis. The empirical results show that there exists negative duration dependence at the first three or for months at the transition period and no duration dependence since a turning point of the baseline hazard rate and that unemployment rate reflecting labor demand conditions has a positive effect on exiting the nonemployment state, which is inconsistent with a theoretical conclusion. Estimation with samples separated by the date of graduation before and after the crisis shows that the effect of unemployment rate on the hazard was negative for the pre-crisis sample but positive for the post-crisis sample.

  • PDF

Study on the Desulfurization Characteristic of Limestone Depending on the Operating Parameters of In-Furnace Desulfurization for Oxy-Fuel Combustion Using Drop Tube Furnace (순산소연소 조건에서 Drop tube furnace를 이용한 운전변수에 따른 석회석의 탈황특성 연구)

  • Choi, Wook;Jo, Hang-Dae;Choi, Won-Kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.857-864
    • /
    • 2011
  • Oxy-fuel combustion with many advantages such as high combustion efficiency, low flue gas flow rate and low NOx emission has emerged as a promising CCS technology for coal combustion facilities. In this study, the effects of the direct sulfation reaction on $SO_2$ removal efficiency were evaluated in a drop tube furnace under typical oxy-fuel combustion conditions represented by high concentrations of $CO_2$ and $SO_2$ formed by gas recirculation to control furnace combustion temperature. The effects of the operating parameters including the reaction temperature, $CO_2$ concentration, $SO_2$ concentration, Ca/S ratio and humidity on $SO_2$ removal efficiency were investigated experimentally. $SO_2$ removal efficiency increased with reaction temperature up to 1,200 due to promoted calcination of limestone reagent particles. And $SO_2$ removal efficiency increased with $SO_2$ concentrations and the humidity of the bulk gas. The increase of $SO_2$ removal efficiency with $CO_2$ concentrations showed that $SO_2$ removal by limestone was mainly done by the direct sulfation reaction under oxy-fuel combustion conditions. From the impact assessment of operation parameters, it was shown that these parameters have an effects on the desulfurization reaction by the order of the Ca/S ratio > residence time > $O_2$ concentration > reaction temperature > $SO_2$ concentration > $CO_2$ concentration > water vapor. The semi-empirical model equation for to evaluate the effect of the operating parameters on the performance of in-furnace desulfurization for oxy-fuel combustion was established.

A study on in-flight acoustic load reduction in launch vehicle fairing by FE-SEA hybrid method (FE-SEA 하이브리드 기법을 이용한 비행 중 발사체 페어링 내부 음향하중 저감에 관한 연구)

  • Choi, Injeong;Park, Seoryong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.351-363
    • /
    • 2020
  • Launch vehicles are subject to airborne acoustic loads during atmospheric flight and these effects become pronounced especially in transonic region. As the vibration due to the acoustic loads can cause malfunction of payloads, it is essential to predict and reduce the acoustic loads. In this study, a complete process has been developed for predicting airborne vibro-acoustic environment inside the payload pairing and subsequent noise reduction procedure employing acoustic blankets and Helmholtz resonators. Acoustic loads were predicted by Reynolds-Averaged Navier-Stokes (RANS) analysis and a semi-empirical model for pressure fluctuation inside turbulent boundary layer. Coupled vibro-acoustic analysis was performed using VA One SEA's Finite Element Statistical Energy Analysis (FE-SEA) hybrid module and ANSYS APDL. The process has been applied to a hammerhead launch vehicle to evaluate the effect of acoustic load reduction and accordingly to verify the effectiveness of the process. The presently developed process enables to obtain quick analysis result with reasonable accuracy and thus is expected to be useful in the initial design phase of a launch vehicle.

Development of Hydraulic Jet Dredge ( 1 ) - Water tank Experiment for the Excavating Performance of Water-Jet Nozzle on the Sand - (분사식 행망의 개발에 관한 연구 ( I ) - 분사노즐의 사면 굴삭성능에 관한 수조실험 -)

  • Jo, Bong-Gon;Go, Gwan-Seo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.255-265
    • /
    • 1991
  • In order to find the excavating performance of water-jet nozzle on the sand, the authors were carried out the excavating experiment with the model nozzles which were semi circular sectioned nozzles and rectangular nozzle in water tank. The results were as follows. 1) Excavating maximum depth and width on the sand by the water jet were straightly increased in proportion to the velocity of water jet and the section area of nozzle, and that, by the nozzle distance from the excavating point on the sand, the depth was decreased, while the width was increased straightly. 2) Rectangular nozzle which the thick of hole is 1mm, was a little bit better than the circular nozzle of the same sectioned area on the excavating performance. 3) Empirical equations between the velocity of water jet, the distance of nozzle, and the maximum excavating depth and width by angle of nozzle were expressed as linear, they were as follows on the 45$^{\circ}$ angle of the rectangular nozzle(1$\times$12mm); D=0.0093V sub(0)-0.23H+5.7. W=0.0147V sub(0)+1.06H+10.2. where, D is the maximum excavating depth(cm), W is the maximum excavation width(cm), V sub(0) is the velocity of water jet(cm/s); 926$\leq$V sub(0)$\leq$1504, H is the distance(cm) from nozzle tip to water-jetted point on the surface of sand.

  • PDF