• 제목/요약/키워드: semantic weight

검색결과 71건 처리시간 0.026초

전자정부내 의미기반 기술 도입에 따른 기능 및 정책 연구 (Research on Function and Policy for e-Government System using Semantic Technology)

  • 고광섭;장영철;이창훈
    • 한국디지털정책학회:학술대회논문집
    • /
    • 한국디지털정책학회 2007년도 춘계학술대회
    • /
    • pp.79-87
    • /
    • 2007
  • This paper aims to offer a solution based on semantic document classification to improve e-Government utilization and efficiency for people using their own information retrieval system and linguistic expression Generally, semantic document classification method is an approach that classifies documents based on the diverse relationships between keywords in a document without fully describing hierarchial concepts between keywords. Our approach considers the deep meanings within the context of the document and radically enhances the information retrieval performance. Concept Weight Document Classification(CoWDC) method, which goes beyond using exist ing keyword and simple thesaurus/ontology methods by fully considering the concept hierarchy of various concepts is proposed, experimented, and evaluated. With the recognition that in order to verify the superiority of the semantic retrieval technology through test results of the CoWDC and efficiently integrate it into the e-Government, creation of a thesaurus, management of the operating system, expansion of the knowledge base and improvements in search service and accuracy at the national level were needed.

  • PDF

영어 어휘 의미 정보와 피치 액센트 (Lexical Semantic Information and Pitch Accent in English)

  • 전윤실;김기호;이용재
    • 음성과학
    • /
    • 제10권3호
    • /
    • pp.187-209
    • /
    • 2003
  • In this paper, we examine if the lexical information of the verb and its noun object affects the pitch accent patterns of the verb phrase focus. Three types of verb-object combinations with different semantic weights are discussed: when the verbs have optional direct objects, when the objects have the greater semantic weight relative to verbs, and when the verbs and the objects have equal semantic weight. Argument-structure-based works note that the pitch accent location in a focused phrase is closely related to the argument structure and contextual information. For example, it has been argued that contextually new noun objects receive accent while given noun objects don't. Contrary to nouns, verbs can be accented or not in verb phrase focus regardless of whether they are given information or new information (Selkirk 1984, 1992). However, the production experiment in this paper shows that the accenting of verbs is not fully optional, but influenced by the lexical semantic information of the verbs. The accenting of noun objects with given information is possible and the deaccenting of new noun objects also occurs depending on the lexical information of the noun objects. The results demonstrate that in addition to argument structure and information by means of context sentences, the lexical semantic information of words influences the pitch accent location in focused phrase.

  • PDF

Constructing the Semantic Information Model using A Collective Intelligence Approach

  • Lyu, Ki-Gon;Lee, Jung-Yong;Sun, Dong-Eon;Kwon, Dai-Young;Kim, Hyeon-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권10호
    • /
    • pp.1698-1711
    • /
    • 2011
  • Knowledge is often represented as a set of rules or a semantic network in intelligent systems. Recently, ontology has been widely used to represent semantic knowledge, because it organizes thesaurus and hierarchal information between concepts in a particular domain. However, it is not easy to collect semantic relationships among concepts. Much time and expense are incurred in ontology construction. Collective intelligence can be a good alternative approach to solve these problems. In this paper, we propose a collective intelligence approach of Games With A Purpose (GWAP) to collect various semantic resources, such as words and word-senses. We detail how to construct the semantic information model or ontology from the collected semantic resources, constructing a system named FunWords. FunWords is a Korean lexical-based semantic resource collection tool. Experiments demonstrated the resources were grouped as common nouns, abstract nouns, adjective and neologism. Finally, we analyzed their characteristics, acquiring the semantic relationships noted above. Common nouns, with structural semantic relationships, such as hypernym and hyponym, are highlighted. Abstract nouns, with descriptive and characteristic semantic relationships, such as synonym and antonym are underlined. Adjectives, with such semantic relationships, as description and status, illustration - for example, color and sound - are expressed more. Last, neologism, with the semantic relationships, such as description and characteristics, are emphasized. Weighting the semantic relationships with these characteristics can help reduce time and cost, because it need not consider unnecessary or slightly related factors. This can improve the expressive power, such as readability, concentrating on the weighted characteristics. Our proposal to collect semantic resources from the collective intelligence approach of GWAP (our FunWords) and to weight their semantic relationship can help construct the semantic information model or ontology would be a more effective and expressive alternative.

간호간병통합서비스 관련 온라인 기사 및 소셜미디어 빅데이터의 의미연결망 분석 (Semantic Network Analysis of Online News and Social Media Text Related to Comprehensive Nursing Care Service)

  • 김민지;최모나;염유식
    • 대한간호학회지
    • /
    • 제47권6호
    • /
    • pp.806-816
    • /
    • 2017
  • Purpose: As comprehensive nursing care service has gradually expanded, it has become necessary to explore the various opinions about it. The purpose of this study is to explore the large amount of text data regarding comprehensive nursing care service extracted from online news and social media by applying a semantic network analysis. Methods: The web pages of the Korean Nurses Association (KNA) News, major daily newspapers, and Twitter were crawled by searching the keyword 'comprehensive nursing care service' using Python. A morphological analysis was performed using KoNLPy. Nodes on a 'comprehensive nursing care service' cluster were selected, and frequency, edge weight, and degree centrality were calculated and visualized with Gephi for the semantic network. Results: A total of 536 news pages and 464 tweets were analyzed. In the KNA News and major daily newspapers, 'nursing workforce' and 'nursing service' were highly rated in frequency, edge weight, and degree centrality. On Twitter, the most frequent nodes were 'National Health Insurance Service' and 'comprehensive nursing care service hospital.' The nodes with the highest edge weight were 'national health insurance,' 'wards without caregiver presence,' and 'caregiving costs.' 'National Health Insurance Service' was highest in degree centrality. Conclusion: This study provides an example of how to use atypical big data for a nursing issue through semantic network analysis to explore diverse perspectives surrounding the nursing community through various media sources. Applying semantic network analysis to online big data to gather information regarding various nursing issues would help to explore opinions for formulating and implementing nursing policies.

워드넷을 이용한 문서내에서 단어 사이의 의미적 유사도 측정 (Semantic Similarity Measures Between Words within a Document using WordNet)

  • 강석훈;박종민
    • 한국산학기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.7718-7728
    • /
    • 2015
  • 단어 사이의 의미적 유사성은 많은 분야에 적용 될 수 있다. 예를 들면 컴퓨터 언어학, 인공지능, 정보처리 분야이다. 본 논문에서 우리는 단어 사이의 의미적 유사성을 측정하는 문서 내의 단어 가중치 적용 방법을 제시한다. 이 방법은 워드넷의 간선의 거리와 깊이를 고려한다. 그리고 문서 내의 정보를 기반으로 단어 사이의 의미적 유사성을 구한다. 문서 내의 정보는 단어의 빈도수와 단어의 의미 빈도수를 사용한다. 문서 내에서 단어 마다 단어 빈도수와 의미 빈도수를 통해 각 단어의 가중치를 구한다. 본 방법은 단어 사이의 거리, 깊이, 그리고 문서 내의 단어 가중치 3가지를 혼합한 유사도 측정 방법이다. 실험을 통하여 기존의 다른 방법과 성능을 비교하였다. 그 결과 기존 방법에 대비하여 성능의 향상을 가져왔다. 이를 통해 문서 내에서 단어의 가중치를 문서 마다 구할 수 있다. 단순한 최단거리 기반의 방법들과 깊이를 고려한 기존의 방법들은, 정보에 대한 특성을 제대로 표현하지 못했거나 다른 정보를 제대로 융합하지 못했다. 본 논문에서는 최단거리와 깊이 그리고 문서 내에서 단어의 정보량까지 고려하였고, 성능의 개선을 보였다.

Latent Semantic Analysis Approach for Document Summarization Based on Word Embeddings

  • Al-Sabahi, Kamal;Zuping, Zhang;Kang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.254-276
    • /
    • 2019
  • Since the amount of information on the internet is growing rapidly, it is not easy for a user to find relevant information for his/her query. To tackle this issue, the researchers are paying much attention to Document Summarization. The key point in any successful document summarizer is a good document representation. The traditional approaches based on word overlapping mostly fail to produce that kind of representation. Word embedding has shown good performance allowing words to match on a semantic level. Naively concatenating word embeddings makes common words dominant which in turn diminish the representation quality. In this paper, we employ word embeddings to improve the weighting schemes for calculating the Latent Semantic Analysis input matrix. Two embedding-based weighting schemes are proposed and then combined to calculate the values of this matrix. They are modified versions of the augment weight and the entropy frequency that combine the strength of traditional weighting schemes and word embedding. The proposed approach is evaluated on three English datasets, DUC 2002, DUC 2004 and Multilingual 2015 Single-document Summarization. Experimental results on the three datasets show that the proposed model achieved competitive performance compared to the state-of-the-art leading to a conclusion that it provides a better document representation and a better document summary as a result.

전자정부내 의미기반 기술 도입에 따른 기능 및 정책 연구 (Research on Function and Policy for e-Government System using Semantic Technology)

  • 장영철
    • 한국산업정보학회논문지
    • /
    • 제13권5호
    • /
    • pp.22-28
    • /
    • 2008
  • 본 논문에서는 전자정부 시스템의 대 국민 사용성과 효율성을 증진시키기 위한 의미기반 문서 분류 방법(CoWDC)을 제시한다. 기존 의미기반 문서분류 방법에서 많은 양의 키워드들의 계층적 컨셉들을 이용하는 것을 지양하고 사용자들이 사용하는 키워드들 간의 관계를 중심으로 문서를 분류한다. 즉, 문서의 컨텍스트(context)에 근거하여 깊고 정확한 의미를 키워드 간 관계를 분석하여 적은 양의 정보로 효율적인 문서분류를 하게 된다. 이를 위해 제안한 CoWDC(Concept Wright Document Classification) 시스템은 기존의 시소러스/온톨로지의 의존도를 줄이고 키워드 관계, 관계의 경중 고려, 상하위 개념으로 변환 등을 통한 실험과 평가가 이루어졌다. 전자정부 시스템의 구조 및 특징 분석을 통해 CoWDC 실험 결과는 대국민 서비스 향상을 위해 매우 필요함을 인지하고 이를 접목하기 위한 기술적, 정책적 제언을 제시하였다. CoWDC를 통해 의미기반 검색기술의 우수함을 입증하였고 이는 전자정부 시스템의 지식베이스 구축, 운영체제의 운용, 시소러스의 구성 등의 과정에서 체계적으로 통합 운영되어야 한다.

  • PDF

어휘의미망(U-WIN)을 이용한 동형이의어 접미사의 의미 중의성 해소 (Disambiguation of Homograph Suffixes using Lexical Semantic Network(U-WIN))

  • 배영준;옥철영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제1권1호
    • /
    • pp.31-42
    • /
    • 2012
  • 현재까지 대부분의 한국어처리시스템에서는 가급적 많은 접미파생명사를 사전에 등재하여 처리하였다. 그러나 접미사는 생산성이 높기 때문에 모든 접미파생명사를 사전에 등재하는 것은 한계가 있다. 따라서 접미파생명사의 의미 분석을 통해서 미등재 접미파생명사를 분석할 필요가 있다. 본 논문에서는 접미파생명사의 의미 분석의 일환으로 한국어 어휘의미망(U-WIN)을 이용한 동형이의어 접미사의 중의성 해소 방법을 제시한다. 형태 의미 주석 세종 말뭉치에서 동형이의어 접미사를 포함한 33,104개의 접미파생명사를 대상으로 실험하였다. 실험을 위해 먼저 동형이의어 접미사를 의미 태깅하였으며, 접미사 앞의 어근을 추출하여 U-WIN의 노드에 매핑시켰다. 또한 동형이의어 접미사와 결합되는 U-WIN 상의 노드들에 대해 거리 가중치를 부여하여 이를 동형이의어 접미사 중의성 해소에 사용하였다. 동형이의어 접미사 49종 중 세종말뭉치에 나타난 35개의 동형이의어 접미사를 대상으로 실험한 결과 91.01%의 정확률을 보였다.

링크드 오픈 데이터에서 TF-IDF를 이용한 새로운 시맨틱 거리 측정 기법 (A New Semantic Distance Measurement Method using TF-IDF in Linked Open Data)

  • 조정길
    • 한국융합학회논문지
    • /
    • 제11권10호
    • /
    • pp.89-96
    • /
    • 2020
  • 링크드 데이터는 다양한 영역의 데이터세트를 서로 연결할 수 있는 표준 방식의 구조화된 데이터를 가능하게 한다. 그리고 링크드 오픈 데이터(LOD)의 급속한 발전에 따라 연구자들은 시맨틱 유사도 평가와 같은 특정 문제를 해결하기 위해 LOD를 이용하고 있다. 이 논문에서는 LOD-기반 추천 시스템에서 사용될 수 있는 자원 간의 링크드 데이터 시맨틱 거리를 계산하기위한 방법을 제안한다. 이 논문에서 제안된 시맨틱 거리 측정 모델은 LOD-기반 시맨틱 거리와 정보 검색 분야에서 잘 알려진 TF-IDF를 이용한 새로운 링크 가중치를 결합한 유사도 측정을 기반으로 한다. 이 논문의 접근방식의 효과성을 검증하기 위하여 DBpedia와 MovieLens의 혼합 데이터를 사용하여 LOD-기반 추천 시스템의 맥락에서 성능을 평가하였다. 실험 결과는 제안된 방법이 다른 유사한 방법과 비교하여 더 높은 정확도를 나타내었다. 또한 시맨틱 거리 계산의 범위를 넓혀서 추천 시스템의 정확도 향상에 기여하였다.

의미적 유사성에 기반한 온톨로지 선택 랭킹 모델 (Ontology Selection Ranking Model based on Semantic Similarity Approach)

  • 오선주;안중호;박진수
    • 한국전자거래학회지
    • /
    • 제14권2호
    • /
    • pp.95-116
    • /
    • 2009
  • 지식 재사용 측면에서 기존의 온톨로지를 재사용할 수 있다면 많은 자원을 절약할 수 있을 것이다. 그러나 기존의 온톨로지를 활용하기 위해서는 보다 발전된 온톨로지 검색 기능이 요구된다. 현재까지 이루어진 관련 연구들에서는 주로 렉시컬 매칭기법을 사용하여 온톨로지를 검색하였다. 그러나 의미적 측면에서 문제점이 있으므로 본 연구에서는 관계의 의미적 유사성에 기반한 온톨로지 선택 랭킹 모델을 제안한다. 본 연구는 개념간 계층 구조와 관계를 온톨로지 검색에 이용함으로써 온톨로지의 선택 랭킹을 효과적이며 실질적으로 개선하였다. 또한 실험을 통해 연구 모델의 결과와 선행 연구의 결과, 온톨로지 전문가의 랭킹 결과를 비교 분석하고 연구 모델의 타당성을 검증하였다. 본 연구 결과는 온톨로지 검색 연구를 이론적으로 발전시켰을 뿐 아니라 실무적인 측면에서 실무자들이 온톨로지를 쉽게 찾아 재사용할 수 있도록 한다.

  • PDF