• 제목/요약/키워드: semantic feature

검색결과 262건 처리시간 0.024초

개인화서비스에서 시맨틱웹 기반의 사용자 선호정보 공유에 관한 연구 (A Study on User Preference Sharing based on Semantic Web in Personalized Services)

  • 김주연;김종우;김창수
    • 한국멀티미디어학회논문지
    • /
    • 제10권10호
    • /
    • pp.1356-1366
    • /
    • 2007
  • 사용자의 요구와 선호도에 따라 적합한 정보를 제공해주는 개인화서비스에 대한 많은 연구와 개발이 진행되어왔다, 하지만 기존의 연구들은 단일시스템 내에서 사용자의 선호정보를 관리하기 때문에, 다양한 서비스들 사이에서 이러한 정보를 공유하기 어렵다는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위한 하나의 방법으로 시맨틱웹 기반의 사용자 선호정보 공유 모델을 제안한다. 이 모델은 사용자의 선호정보가 각 서비스의 특성을 반영하는 서비스 온톨로지 상에서 의미를 기반으로 기술되어지고 공유되어지도록 한다. 또한, 본 논문에서는 제안모델을 지원하는 미들웨어 구현을 통해 제안모델을 분석하고 평가한다. 제안하는 접근방법은 각 서비스를 중심으로 사용자 선호정보를 기술할 수 있으면서도 다양한 서비스들 간에 그 정보를 공유할 수 있기 때문에, 기존의 연구보다 효율적인 개인화서비스를 제공할 수 있다는 장점이 있다.

  • PDF

구조 및 의미 정보를 활용한 파스 트리 커널 기반의 온톨로지 정렬 방법 (Ontology Alignment based on Parse Tree Kernel usig Structural and Semantic Information)

  • 손정우;박성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권4호
    • /
    • pp.329-334
    • /
    • 2009
  • 기존 온톨로지 정렬 기법은 두가지 문제점을 가지고 있다. 먼저 자질을 해당 분야 전문가가 정의하기 때문에 중요한 자질들이 자질셋에 포함되지 않을 수 있다는 것이다. 다음으로는 온톨로지의 의미 정보와 구조 정보를 이용하여 유사도를 따로 계산한 후, 각각의 실험에 의해 정의된 가중치를 이용하여 전체 유사도를 계산한다. 하지만 온톨로지 상에 나타나는 의미 정보와 구조정보의 상대적인 가중치가 실험적인 방법 혹은 사용자에 의해 결정되기 때문에 시스템이 특정 온톨로지에 한정되거나 성능이 떨어질 수 있어 문제이다. 본 논문에서는 온톨로지 정렬을 위한 파스 트리 커널을 제안한다. 온톨로지 상의 개체에 대한 유사도를 계산하기 위해 먼저 온톨로지를 트리 구조로 변환한다 그 후, 변환된 트리 간의 유사도는 온톨로지 정렬을 위해 수정된 파스트리 커널을 이용하여 계산한다. 이때 자질은 명시적으로 나열하지 않는다. 유사도 계산시, 파스 트리 커널에 근사 스트링 매칭 기법을 적용하여 의미 정보를 반영한다. 검증 위한 실험에서 제안한 방법은 기존의 온톨로지 정렬 기법보다 나은 성능을 보였다.

임베디드 보드에서 실시간 의미론적 분할을 위한 심층 신경망 구조 (A Deep Neural Network Architecture for Real-Time Semantic Segmentation on Embedded Board)

  • 이준엽;이영완
    • 정보과학회 논문지
    • /
    • 제45권1호
    • /
    • pp.94-98
    • /
    • 2018
  • 본 논문은 자율주행을 위한 실시간 의미론적 분할 방법으로 최적화된 심층 신경망 구조인 Wide Inception ResNet (WIR Net)을 제안한다. 신경망 구조는 Residual connection과 Inception module을 적용하여 특징을 추출하는 인코더와 Transposed convolution과 낮은 층의 특징 맵을 사용하여 해상도를 높이는 디코더로 구성하였고 ELU 활성화 함수를 적용함으로써 성능을 올렸다. 또한 신경망의 전체 층수를 줄이고 필터 수를 늘리는 방법을 통해 성능을 최적화하였다. 성능평가는 NVIDIA Geforce gtx 1080과 TX1 보드를 사용하여 주행환경의 Cityscapes 데이터에 대해 클래스와 카테고리별 IoU를 평가하였다. 실험 결과를 통해 클래스 IoU 53.4, 카테고리 IoU 81.8의 정확도와 TX1 보드에서 $640{\times}360$, $720{\times}480$ 해상도 영상처리에 17.8fps, 13.0fps의 실행속도를 보여주는 것을 확인하였다.

시멘틱 세그멘테이션을 활용한 이미지 오브젝트의 효율적인 영역 추론 (Efficient Inference of Image Objects using Semantic Segmentation)

  • 임헌영;이유림;지민규;고명현;김학동;김원일
    • 방송공학회논문지
    • /
    • 제24권1호
    • /
    • pp.67-76
    • /
    • 2019
  • 본 연구에서는 다중 라벨링이 되어 있는 이미지 데이터를 대상으로 시멘틱 세그멘테이션을 활용한 효율적인 오브젝트별 영역 분류 기법을 연구한다. 이미지 데이터에 포함된 색상 정보, 윤곽선, 명암, 채도 등 다양한 픽셀 단위 정보와 프로세싱 기법뿐만 아니라 각 오브젝트들이 위치한 세부 영역을 의미 있는 단위로 추출하여 추론 결과에 반영하는 실험을 진행하고 그 결과에 대해 논의한다. 이미지 분류에서 훌륭한 성능을 검증받은 뉴럴 네트워크를 활용하여 비정형성이 심하고 다양한 클래스 오브젝트가 포함된 이미지 데이터를 대상으로 어떤 오브젝트가 어디에 위치하였는지 파악하는 작업을 진행한다. 이러한 연구를 기반으로 향후 다양한 오브젝트가 포함된 복잡한 이미지의 실시간 세부 영역 분류를 진행하는 인공지능 서비스 제공을 목표로 한다.

Research on damage detection and assessment of civil engineering structures based on DeepLabV3+ deep learning model

  • Chengyan Song
    • Structural Engineering and Mechanics
    • /
    • 제91권5호
    • /
    • pp.443-457
    • /
    • 2024
  • At present, the traditional concrete surface inspection methods based on artificial vision have the problems of high cost and insecurity, while the computer vision methods rely on artificial selection features in the case of sensitive environmental changes and difficult promotion. In order to solve these problems, this paper introduces deep learning technology in the field of computer vision to achieve automatic feature extraction of structural damage, with excellent detection speed and strong generalization ability. The main contents of this study are as follows: (1) A method based on DeepLabV3+ convolutional neural network model is proposed for surface detection of post-earthquake structural damage, including surface damage such as concrete cracks, spaling and exposed steel bars. The key semantic information is extracted by different backbone networks, and the data sets containing various surface damage are trained, tested and evaluated. The intersection ratios of 54.4%, 44.2%, and 89.9% in the test set demonstrate the network's capability to accurately identify different types of structural surface damages in pixel-level segmentation, highlighting its effectiveness in varied testing scenarios. (2) A semantic segmentation model based on DeepLabV3+ convolutional neural network is proposed for the detection and evaluation of post-earthquake structural components. Using a dataset that includes building structural components and their damage degrees for training, testing, and evaluation, semantic segmentation detection accuracies were recorded at 98.5% and 56.9%. To provide a comprehensive assessment that considers both false positives and false negatives, the Mean Intersection over Union (Mean IoU) was employed as the primary evaluation metric. This choice ensures that the network's performance in detecting and evaluating pixel-level damage in post-earthquake structural components is evaluated uniformly across all experiments. By incorporating deep learning technology, this study not only offers an innovative solution for accurately identifying post-earthquake damage in civil engineering structures but also contributes significantly to empirical research in automated detection and evaluation within the field of structural health monitoring.

소프트웨어 제품 계열 공학의 온톨로지 기반 휘처 공동성 및 가변성 분석 기법 (Ontology-based Approach to Analyzing Commonality and Variability of Features in the Software Product Line Engineering)

  • 이순복;김진우;송치양;김영갑;권주흠;이태웅;김현석;백두권
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권3호
    • /
    • pp.196-211
    • /
    • 2007
  • 제품 계열 공학에서 제품의 공통성 및 가변성 분석을 결정짓게 하는 기준인 휘처 (feature) 분석에 대한 기존 연구는 개발자의 직관이나 도메인 전문가의 경험에 근간으로 분석 기준이 객관적이지 못하며, 비정형적인 휘처 분석으로 인한 이해 당사자 (stakeholder)의 공통된 휘처의 이해 부족 및 불명확한 휘처를 추출하는 문제점이 있었고, 기 개발된 소프트웨어에서 사용된 휘처의 재사용 개념이 부족했었다. 본 논문에서는 특정 도메인의 휘처 모델을 온톨로지로 변환하여 의미 기반 유사성 분석 기준에 의해 휘처의 공통성과 가변성을 추출하는 기법을 제시한다. 이를 위해, 먼저 공통된 휘처 중심의 메타 휘처 모델 기반으로 휘처의 속성을 정립하고, 메타 모텔에 준거하여 휘처 모델을 생성하여 온톨로지로 변환 후, 휘처 온톨로지 리포지토리 (Repository)에 저장한다. 이후, 동일 제품 계열 도메인의 휘처 모델 구축 시, 기 존 생성 모델과 온톨로지의 의미 기반 유사성 비교 분석 기법을 통해 휘처의 공통성과 가변성을 추출하는 것이다 또한 유사성 비교 알고리즘을 툴로 구현하였으며, 전자 결재 시스템 도메인의 실험 및 평가를 통 해 효과성을 보인다. 본 기법을 통해 메타 휘처 모델의 구문적 정립으로 이해성과 정확성을 제고시켜 고품질의 휘처 모델을 구축할 수 있으며, 온톨로지의 의미 기반 매핑으로 휘처의 공통성 및 가변성 추출을 정형화할 수 있고, 재사용성을 향상시킬 수 있다.

기계학습 기반 개체명 인식을 위한 사전 자질 생성 (Feature Generation of Dictionary for Named-Entity Recognition based on Machine Learning)

  • 김재훈;김형철;최윤수
    • 정보관리연구
    • /
    • 제41권2호
    • /
    • pp.31-46
    • /
    • 2010
  • 오늘날 정보 추출의 한 단계로서 개체명 인식은 정보검색 분야 뿐 아니라 질의응답과 요약 분야에서 매우 유용하게 사용되고 있다. 개체명은 일반 단어와 달리 다양한 문서에서 꾸준히 생성되고 변화되고 있다. 이와 같은 개체명의 특성 때문에 여러 응용 시스템에서 미등록어 문제가 야기된다. 본 논문에서는 이런 미등록어 문제를 해결하기 위해 기계학습 기반 개체명 인식 시스템을 위한 새로운 자질 생성 방법을 제안한다. 일반적으로 기계학습 기반 개체명 인식 시스템은 단어 단위의 자질을 사용하므로 구절 단위의 개체명을 그대로 자질로 사용할 수 없다. 이 문제를 해결하기 위해 본 논문에서는 새로운 구절 단위의 정보를 단어 단위의 자질로 변환하는 자질 생성 방법을 제안하였다. 이 방법으로 개체명 사전과 WordNet을 개체명 인식의 자질로 사용할 수 있었다. 그 결과 영어 개체명 시스템은 F1 점수의 약 6%가 향상되었고 오류의 약 38%가 줄어들었다.

X-바 이론의 중심어 개념을 도입한 형태소 단위의 한국어 자질 기반 문법 (A Morpheme-unit Korean Feature-Based Brammer (KFG) with the X-bar Theoretic Notion of Headedness)

  • 박소영;황영숙;임해창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권10호
    • /
    • pp.1247-1259
    • /
    • 1999
  • 본 논문에서는 한국어 문장형성원리를 간결하게 제시할 수 있도록 X-바 이론의 중심어 개념을 도입한 한국어 자질기반 문법을 제안한다. 제안하는 문법은 어절에 관계없이 나타나는 한국어의 문법현상을 명확히 설명할 수 있도록 어절 대신 형태소를 기본단위로 한다. 그리고, 한국어의 구문범주가 지닌 의미정보와 기능정보를 자질을 이용하여 독립적으로 표현하며, 구문범주간의 결합관계를 바탕으로 하는 자질연산을 수행하여 문장을 분석한다. 또한, 한국어의 부분자유어순과 생략현상에 대해 견고하게 분석할 수 있도록 자질연산을 이진결합중심의 CNF(Chomsky Normal Form)로 제한한다. 이렇게 구성된 한국어 자질기반 문법은 규칙을 직관적이고도 간단하게 기술하며, 한국어의 다양한 문장들을 견고하게 분석한다. SERI Test Suites 97과 신문기사에서 746문장을 추출하여 실험한 결과 94%~99%의 적용율을 보였다.Abstract In this paper, we propose a Korean feature-based grammar(KFG) which adopts the X-bar theoretic notion of headedness for a precise representation of Korean syntactic structure. In order to explain various language phenomena in a given sentence, we use not the word but the morpheme as a constituent unit of KFG. We use features manifesting both the syntactic information and the semantic information of Korean syntactic categories, and feature operations based on the association relationship between two categories. In addition, we restrict feature operations to CNF(Chomsky Normal Form) binary form, which provides a robust representation for properties in Korean such as the frequent ellipsis and the partial free-order. The KFG is intuitive, simple, and versatile in representing most Korean sentences. The experimental result shows 94%~99% coverage on 746 sentences extracted from SERI Test Suites 97 and newspaper sentences.

음소 유사율 오류 보정을 이용한 어휘 인식 후처리 시스템 (Vocabulary Recognition Post-Processing System using Phoneme Similarity Error Correction)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권7호
    • /
    • pp.83-90
    • /
    • 2010
  • 어휘 인식 시스템에서 인식률 저하의 요인으로는 유사한 음소 인식과 부정확한 어휘 제공으로 인해 오인식 오류가 존재한다. 부정확한 어휘의 입력으로 특징을 추출하여 인식할 경우 오인식의 결과가 나타나거나 유사한 음소로 인식되며 특징 추출이 제대로 이루어지지 않으면 음소 인식 시 유사한 음소로 인식하게 된다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 음소 유사율을 이용한 어휘 인식 후처리에서의 오류 보정 후처리 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터를 각각의 음소에 MFCC와 LPC 특징 추출 방법을 이용하여 구하였다. 유사한 음소는 정확한 음소로 인식할 수 있도록 유도하여 부정확한 어휘 제공으로 인하여 오인식되는 오류를 최소화하였다. 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러패턴 학습을 이용한 시스템과 의미기반을 이용한 시스템에 비해 시스템 성능 평가 결과 MFCC와 LPC는 각각 7.5%와 5.3%의 인식 향상률을 보였다.

A Novel Two-Stage Training Method for Unbiased Scene Graph Generation via Distribution Alignment

  • Dongdong Jia;Meili Zhou;Wei WEI;Dong Wang;Zongwen Bai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권12호
    • /
    • pp.3383-3397
    • /
    • 2023
  • Scene graphs serve as semantic abstractions of images and play a crucial role in enhancing visual comprehension and reasoning. However, the performance of Scene Graph Generation is often compromised when working with biased data in real-world situations. While many existing systems focus on a single stage of learning for both feature extraction and classification, some employ Class-Balancing strategies, such as Re-weighting, Data Resampling, and Transfer Learning from head to tail. In this paper, we propose a novel approach that decouples the feature extraction and classification phases of the scene graph generation process. For feature extraction, we leverage a transformer-based architecture and design an adaptive calibration function specifically for predicate classification. This function enables us to dynamically adjust the classification scores for each predicate category. Additionally, we introduce a Distribution Alignment technique that effectively balances the class distribution after the feature extraction phase reaches a stable state, thereby facilitating the retraining of the classification head. Importantly, our Distribution Alignment strategy is model-independent and does not require additional supervision, making it applicable to a wide range of SGG models. Using the scene graph diagnostic toolkit on Visual Genome and several popular models, we achieved significant improvements over the previous state-of-the-art methods with our model. Compared to the TDE model, our model improved mR@100 by 70.5% for PredCls, by 84.0% for SGCls, and by 97.6% for SGDet tasks.