• 제목/요약/키워드: self-tuning control

검색결과 336건 처리시간 0.036초

자기동조 퍼지 PI 제어기의 설계와 응용 (Design and application of self tuning fuzzy PI controller)

  • 이성주;오성권;남의석;황희수;이석진;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.238-242
    • /
    • 1991
  • This paper presents an approach to self-tuning PI control of dynamic plants, based on fuzzy logic application. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a fuzzy logic controller, one of the most difficult problem is the selection of linguistic control rules and parameters. To overcome this difficulty, self-tuning fuzzy PI controller (STFPIC) with a hierarchical structure in which the fuzzy PI controller is assigned as the lower level and the rule modification and parameter adjustment as the higher level. The rules and parameters are generated by the adjustment of membership function through performance index(PE). In this paper, the algorithm for of the controller performance is estimated by means of computer simulation.

  • PDF

Application of Personal Computer as a Self-Tuning PID Controller

  • Tanachaikhan, L.;Sriratana, W.;Pannil, P.;Chaikla, A.;Julsereewong, P.;Tirassesth, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.505-505
    • /
    • 2000
  • Controlling the process by PID controller is widely used in industry by applying Ziegler-Nichols method in analyzing parameter of the controller. However, in fact. it is still necessary to tune parameter in order to obtain the best process response. This paper presents a Self-Tuning PID controller utilizes the personal computer to synthesize and analyze controller parameter as well as tune for appropriate parameter by using Dahlin method and Extrapolation. Experimental results using a Self-Tuning PID controller to control water level and temperature, it is found that the controller being developed is able to control the process very effectively and provides a good response similar to the controller used in the industry.

  • PDF

Robust Speed Controller of Induction Motor using Neural Network-based Self-Tuning Fuzzy PI-PD Controller

  • Kim, Sang-Min;Kwon, Chung-Jin;Lee, Chang-Goo;Kim, Sung-Joong;Han, Woo-Youn;Shin, Dong-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.67.1-67
    • /
    • 2001
  • This paper presents a neural network based self-tuning fuzzy PI-PD control scheme for robust speed control of induction motor. The PID controller is being widely used in industrial applications. When continuously used long time, the electric and mechanical parameters of induction motor change, degrading the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, and proposes a neural network based self-tuning fuzzy PI-PD controller whose scaling factors are adjusted automatically. Proposed scheme is simple in structure and computational burden is small ...

  • PDF

신경회로망을 이용한 직접 자기동조제어기의 설계 (Design of a Direct Self-tuning Controller Using Neural Network)

  • 조원철;이인수
    • 전자공학회논문지SC
    • /
    • 제40권4호
    • /
    • pp.264-274
    • /
    • 2003
  • 본 논문에서는 잡음과 시간지연이 존재하며 시스템 파라미터가 변하는 비선형 비최소위상 시스템에 적응하는 신경회로망이 결합된 PID구조를 갖는 일반화 최소분산 자기동조제어기를 제안한다. PID구조를 갖는 자기동조는 PID제어기처럼 구조가 간단하고 계통을 정밀하게 제어하는 자기동조 제어기의 특성을 그대로 유지할 수 있다. 일반화 최소분산 자기동조 제어기 파라미터는 비선형 시스템을 선형시스템으로 간주하고 순환최소자승법으로 추정하며 설계계수의 값은 확률근사법인 Robbins-Monro 알고리듬을 이용하여 자동조정하였다. 역전파 학습 알고리듬을 사용하는 신경회로망 제어기는 비선형 부분의 제어를 보상하기 위해 필터된 기준입력과 필터된 플랜트 출력이 같도록 제어값을 출력한다. 컴퓨터 시뮬레이션을 통해 제안한 방법이 시스템의 파라미터가 변하는 비최소위상 시스템에 잘 적응함을 보였다.

자기동조 PID제어기를 위한 퍼지전문가 시스템 (A fuzzy expert system for auto-tuning PID controllers)

  • 이기상;김현철;박태건;김일우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.398-403
    • /
    • 1993
  • A rule based fuzzy expert system to self-tune PID controllers is proposed in this paper. The proposed expert system contains two rule bases, where one is responsible for "Long term tuning" and the other for "Incremental tuning". The rule for "Long term tuning" are extracted from the Wills'map and the knowledge about the implicit relations between PID gains and important long term features of the output response such as overshoot, damping and rise time, etc., while 'Incremental tuning" rules are obtained from the relations between PID gains and short term features, error and change in error. In the PID control environment, the proposed expert system operates in two phases sequentially. In the first phase, the long term tuning is performed until long term features meet their desired values approximately. Then the incremental tuning tarts with PID gains provided by the long term tuning procedure. It is noticeable that the final PID gains obtained in the incremental tuning phase are only the temporal ones. Simulation results show that the proposed rule base for "Long term tuning" provides superior control performance to that of Litt and that further improvement of control performance is obtained by the "Incremental tuning'.ance is obtained by the "Incremental tuning'.ing'.

  • PDF

진화 연산을 이용한 실시간 자기동조 학습제어 (The Real-time Self-tuning Learning Control based on Evolutionary Computation)

  • 장성욱;이진걸
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.105-109
    • /
    • 2001
  • This paper discuss the real-time self-tuning learning control based on evolutionary computation, which proves its the superiority in the finding of the optimal solution at the off-line learning method. The individuals are reduced in order to learn the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations are proposed. It possible to control the control object varied as time changes. As the state value of the control object is generated, applied evolutionary strategy each sampling time because the learning process of an estimation, selection, mutation in real-time. These algorithms can be applied, the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes.

  • PDF

실시간 적응 학습 진화 알고리듬을 이용한 자기 동조 PID 제어 (The Self-tuning PID Control Based on Real-time Adaptive Learning Evolutionary Algorithm)

  • 장성욱;이진걸
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1463-1468
    • /
    • 2003
  • This paper presented the real-time self-tuning learning control based on evolutionary computation, which proves its superiority in finding of the optimal solution at the off-line learning method. The individuals of the populations are reduced in order to learn the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations is proposed. It is possible to control the control object slightly varied as time changes. As the state value of the control object is generated, evolutionary strategy is applied each sampling time because the learning process of an estimation, selection, mutation is done in real-time. These algorithms can be applied; the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes.

초타원 가우시안 소속함수를 사용한 퍼지신경망 모델링 (Fuzzy neural network modeling using hyper elliptic gaussian membership functions)

  • 권오국;주영훈;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.442-445
    • /
    • 1997
  • We present a hybrid self-tuning method of fuzzy inference systems with hyper elliptic Gaussian membership functions using genetic algorithm(GA) and back-propagation algorithm. The proposed self-tuning method has two phases : one is the coarse tuning process based on GA and the other is the fine tuning process based on back-propagation. But the parameters which is obtained by a GA are near optimal solutions. In order to solve the problem in GA applications, it uses a back-propagation algorithm, which is one of learning algorithms in neural networks, to finely tune the parameters obtained by a GA. We provide Box-Jenkins time series to evaluate the advantage and effectiveness of the proposed approach and compare with the conventional method.

  • PDF

먼지센서에 의한 진공청소기의 흡입력 제어에 관한 연구 (A Study on the Suction Power Control of Vacuum Cleaner with a Dust Sensor)

  • 백승면;김성진;이만형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.304-307
    • /
    • 1995
  • In this paper, an optical sensing system has been developed to detect the dust in vacuum cleaner. The system works well through self-tuning mechanism, even though there are systemic variance and characteristic change which is caused by the pollution on the surface of the optical elements. Using the developed sensing system, a novel suction power control system has been proposed, which is able to be used for a long time.

  • PDF

부하변동을 고려한 직류 서어보전동기의 자기동조제어에 관한 연구 (Self-tuning Control of DC Servo Motor Taking into Account of Load Variation)

  • 이윤종;오원석;김영태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.430-433
    • /
    • 1988
  • An adaptive control system for D.C servo drive is developed via minimum variance control theory. The problem of designing this controller under varying load conditions is discussed. A robust self tuning controller that can track a constant reference and reject constant load disturbance is developed. Simulation study shows that the controller has excellent adaptation, capability as well as transient recovery under load changes.

  • PDF