• Title/Summary/Keyword: self-tuning adaptive control

Search Result 90, Processing Time 0.026 seconds

A Study on Compliance Control of a SCARA Robot (스카라 로보르에 대한 순응성 제어에 관한 연구)

  • Yee, Yang-Hee;Do, Mi-Sun;Kim, Sung-Woo;Park, Mig-Non;Lee, Sang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.514-517
    • /
    • 1990
  • In this paper, compliant motion control of a manipualator in manipulator is proposed by using the self-tuning adaptive controller. Compliant motion is needed in order to applicated to complicated and accurate fields such as assembly operation in which several parts are matched. For a control method of compliant motion hybrid control is used so forces and position control are proposed selectively through a closed feedback loop. By contacting with environment, the uncertainties higher. Self-tuning controller which adapts to variable dynamic response is applied to compliant motion control in order to satisfy the desired operation. The applicability of the suggested algorithm was confined by simulation of the contour tracking task of four joint manipulator.

  • PDF

A Study on the Speed Control of a DC Servo Motor by the Pole-Placement PID Self Tuning Control Method. (극 배치 PID 자기동조 제어방식에 의한 DC 서보전동기 속도에 관한 연구)

  • 강형수;양해원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.9
    • /
    • pp.646-654
    • /
    • 1988
  • In this paper, a speed controller using a microcomputer is implemented and applied to a DC Servo Motor. Adaptive control is applied to a system for which a priori knowledge to its mathematical model is insufficient, on the basis of input and output data an apropriate controller is constructed through which the system input is synthesized. The pole-placement PID self tuning control algorithms as a control algorithm is used to compare the performance of the controller with that of the classical PID controller through computer simulations and experiments.

  • PDF

Development of Modern Control Simulation Pachage - KERICON(I)

  • Park, Jung-Woo;Lee, Jae-Duck;Kim, Kook-Hun;Kim, Hee-Yo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1436-1439
    • /
    • 1990
  • Even though the concept "Adaptive" was introduced in the late 50's, the main contribution to adaptive and/or self-tuning control has been made since late 70's. This paper describes the feature of adaptive control simulation package KERICON(I) developed in KERI. Informations on hardware environments, install and testing of a new algorithm and user interfacings are also summarized. The package is written in C language and currently being updated for expert-type adaptive control package (KERICON II).RICON II).

  • PDF

Development of a self-Tuning fuzzy controller for the speed control of an induction motor (유도전동기 속도 제어를 위한 뉴로 자기 동조 퍼지 제어기 개발)

  • Kim, Do-Han;Han, Jin-Wook;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.248-252
    • /
    • 2003
  • This paper has a control method proposed for the effective self-tuning fuzzy speed control based on neural network of the induction motor indirect vector control. The vector control of an induction motor provides the decoupled control of the rotor flux magnitude and the torque producing current to performance is desirable. But, the drive performance often degrades for the machine parameter variations and its condition give rise to coupling of flux and torque current. The fuzzy speed control of an induction motor has the robustness about machine parameter variations compared with conventional PID speed control in a way. That proved to be some waf from the true. The purpose of this paper is to improve the adaptation by offering self-turning function to fuzzy speed controller. In this paper, the adaptive mechanism of fuzzy speed control in used ANN(Artificial Neural Network) technique is applied in an IFO induction machine drive, such that the machine can follow a reference model (an ideal field oriented machine) to achieve desired speed. In this paper proved the self-turning method of fuzzy controller has the robustness about parameter variation and the wide range of adaptation by simulation.

  • PDF

HBPI Controller of Induction Motor using Fuzzy Adaptive Mechanism (퍼지 적응 메카니즘을 이용한 유도전동기의 HBPI 제어기)

  • Nam Su-Myung;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.395-401
    • /
    • 2005
  • This paper presents Hybrid PI(HBPI) controller of induction motor drive using fuzzy control. In general, PI controllers used in computer numerically controlled machines process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, HBPI controller proposes a new method based self tuning PI controller. HBPI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of induction motor are presented to show the effectiveness of the proposed gam tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

Improved Neural Network-based Self-Tuning Fuzzy PID Controller for Sensorless Vector Controlled Induction Motor Drives (센서리스 유도전동기의 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Kim, Sang-Min;Han, Woo-Yong;Lee, Chang-Goo;Han, Hoo-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1165-1168
    • /
    • 2002
  • This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for sensorless vector controlled induction motor drives. MRAS(Model Reference Adaptive System) is used for rotor speed estimation. When induction motor is continuously used long time. its electrical and mechanical parameters will change, which degrade the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. The proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using DS1102 board show the robustness of the proposed controller to parameter variations.

  • PDF

Self-Tuning PID Control of Systems with Time-Varying Delays (시변 지연시간이 존재하는 시스템의 자기동조 PID 제어)

  • 남현도;안동준
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.364-370
    • /
    • 1990
  • In this paper, we propose a self-tuning PID controller for unknown systems with time-varying delay. Using pole placement equations, we derive the controller that can be extended to the multi-step time delay case. The time-varying delays are estimated by a prediction error delay method using multiple predictors. Since the order of the estimation vector is not increased, the persistant exciting condition of control input is alleviated. Since the least square method gives biased parameter estimates for colored noise cases, the recursive instrumental variable method is used to estimate system parameters. The computational burden of the proposed method is less than the conventional adaptive methods. Computer simulations are performed to illustrate the efficiency of the proposed method.

  • PDF

A Study on Nonlinear System Control Using Adaptive PID Control (적응형 PID 제어기를 이용한 비선형 시스템 제어에 관한 연구)

  • Cho, Hyun-C.;Kim, Seong-H.;Lee, Young-J.;Lee, Kwon-S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.702-704
    • /
    • 1997
  • In this paper, we applied self-tuning controller with I-PD type to process with time delay's. Process parameters are estimated by the recursive least squares algorithm, and optimal gains are obtained. This paper shows self-tuning controller with I-PD type performs better than that of general PID type for the nonlinear system with sudden change of set-points.

  • PDF

Nonlinear PID Controller with Neural Network based Compensator (신경회로망 보상기를 갖는 비선형 PID 제어기)

  • Lee, Chang-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.225-234
    • /
    • 2000
  • In this paper, we present an nonlinear PID controller with network based compensator which consists of a conventional PID controller that controls the linear components and neuro-compensator that controls the output errors and nonlinear components. This controller is based on the Harris's concept where he explained that the adaptive controller consists of the PID control term and the disturbance compensating term. The resulting controller's architecture is also found to be very similar to that of Wang's controller. This controller adds a self-tuning ability to the existing PID controller without replacing it by compensating the output errors through the neuro-compensator. Various simulations and comparative studies have proven that the proposed nonlinear PID controller produces superior results to other existing PID controllers. When applied to an actual magnetic levitation system which is known to be very nonlinear, it has also produced an excellent results.

  • PDF