• 제목/요약/키워드: self-recognition algorithm

검색결과 116건 처리시간 0.023초

SOM 알고리즘을 이용한 부분방전 패턴인식에 대한 연구 (A Study on the Partial Discharge Pattern Recognition by Use of SOM Algorithm)

  • 김정태;이호근;임윤석;김지홍;구자윤
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권10호
    • /
    • pp.515-522
    • /
    • 2004
  • In this study, we tried to investigate that the advantages of SOM(Self Organizing Map) algorithm such as data accumulation ability and the degradation trend trace ability would be adaptable to the analysis of partial discharge pattern recognition. For the purpose, we analyzed partial discharge data obtained from the typical artificial defects in GIS and XLPE power cable system through SOM algorithm. As a result, partial discharge pattern recognition could be well carried out with an acceptable error by use of Kohonen map in SOM algorithm. Also, it was clarified that the additional data could be accumulated during the operation of the algorithm. Especially, we found out that the data accumulation ability of Kohonen map could make it possible to suggest new patterns, which is impossible through the conventional BP(Back Propagation) algorithm. In addition, it is confirmed that the degradation trend could be easily traced in accordance with the degradation process. Therefore, it is expected to improve on-site applicability and to trace real-time degradation trends using SOM algorithm in the partial discharge pattern recognition

Human Face Recognition used Improved Back-Propagation (BP) Neural Network

  • Zhang, Ru-Yang;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제21권4호
    • /
    • pp.471-477
    • /
    • 2018
  • As an important key technology using on electronic devices, face recognition has become one of the hottest technology recently. The traditional BP Neural network has a strong ability of self-learning, adaptive and powerful non-linear mapping but it also has disadvantages such as slow convergence speed, easy to be traversed in the training process and easy to fall into local minimum points. So we come up with an algorithm based on BP neural network but also combined with the PCA algorithm and other methods such as the elastic gradient descent method which can improve the original network to try to improve the whole recognition efficiency and has the advantages of both PCA algorithm and BP neural network.

자율주행을 위한 라이다 기반 객체 인식 및 분류 (Lidar Based Object Recognition and Classification)

  • 변예림;박만복
    • 자동차안전학회지
    • /
    • 제12권4호
    • /
    • pp.23-30
    • /
    • 2020
  • Recently, self-driving research has been actively studied in various institutions. Accurate recognition is important because information about surrounding objects is needed for safe autonomous driving. This study mainly deals with the signal processing of LiDAR among sensors for object recognition. LiDAR is a sensor that is widely used for high recognition accuracy. First, we clustered and tracked objects by predicting relative position and speed of objects. The characteristic points of all objects were extracted using point cloud data of each objects through proposed algorithm. The Classification between vehicle and pedestrians is estimated using number of characteristic points and distances among characteristic points. The algorithm for classifying cars and pedestrians was implemented and verified using test vehicle equipped with LiDAR sensors. The accuracy of proposed object classification algorithm was about 97%. The classification accuracy was improved by about 13.5% compared with deep learning based algorithm.

Facial Expression Recognition through Self-supervised Learning for Predicting Face Image Sequence

  • Yoon, Yeo-Chan;Kim, Soo Kyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.41-47
    • /
    • 2022
  • 본 논문에서는 자동표정인식을 위하여 얼굴 이미지 배열의 가운데 이미지를 예측하는 새롭고 간단한 자기주도학습 방법을 제안한다. 자동표정인식은 딥러닝 모델을 통해 높은 성능을 달성할 수 있으나 일반적으로 큰 비용과 시간이 투자된 대용량의 데이터 세트가 필요하고, 데이터 세트의 크기와 알고리즘의 성능이 비례한다. 제안하는 방법은 추가적인 데이터 세트 구축 없이 기존의 데이터 세트를 활용하여 자기주도학습을 통해 얼굴의 잠재적인 심층표현방법을 학습하고 학습된 파라미터를 전이시켜 자동표정인식의 성능을 향상한다. 제안한 방법은 CK+와 AFEW 8.0 두가지 데이터 세트에 대하여 높은 성능 향상을 보여주었고, 간단한 방법으로 큰 효과를 얻을 수 있음을 보여주었다.

컴퓨터 면역시스템 개발을 위한 인공면역계의 모델링과 자기인식 알고리즘 (Modelling of Artificial Immune System for Development of Computer Immune system and Self Recognition Algorithm)

  • 심귀보;서동일;김대수;임기욱
    • 한국지능시스템학회논문지
    • /
    • 제12권1호
    • /
    • pp.52-60
    • /
    • 2002
  • 최근 컴퓨터의 사용이 보편화되면서 악의적 사용자에 의해 발생하는 컴퓨터 바이러스와 해킹에 의한 피해가 급속히 증가하고 있다. 남의 컴퓨터에 침입하는 해킹이나 데이터를 파괴하는 컴퓨터 바이러스에 의한 피해를 막기 위해 최근에 생명체의 면역시스템의 특징을 이용해 인공면역계를 구성해 시스템 침입탐지와 바이러스 탐지 및 치료에 대한 연구가 활발히 진행 중에 있다. 생체 면역계는 외부에서 침입해 세포나 장기에 피해를 주는 물질인 항원을 스스로 자기세포와 구분해 인식.제거하는 기능이 있다. 이러한 면역계의 특징인 항원을 인식하는 기능은 자기세포의 확실한 인식을 가지고 있는 상태에서 다른 물질을 구분하는 자기.비자기 인식방법으로 똘 수 있다. 본 논문에서는 생체 면역계에서 세포독성 T세포의 생성과정의 하나인 Negative 및 Positive Selection을 모델링하여 침입에 의한 데이터 변경과 바이러스에 의한 데이터 감염 등을 탐지할 때 가장 중요한 요소인 자기 인식 알고리즘을 구현한다. 제안한 알고리즘은 큰 파일에서의 Detection을 구성하기 용이한 점을 가지며 국소(cell)변경과 블록(string)변경에 대한 자기인식률을 통해 알고리즘의 유효성을 검증한다.

직선 추출을 위한 자기조직화지도 기반의 허프 변환 (A Self-Organizing Map Based Hough Transform for Detecting Straight Lines)

  • 이문규
    • 대한산업공학회지
    • /
    • 제28권2호
    • /
    • pp.162-170
    • /
    • 2002
  • Detecting straight lines in an image is frequently required for various machine vision applications such as restoring CAD drawings from scanned images and object recognition. The standard Hough transform has been dominantly used to that purpose. However, massive storage requirement and low precision in estimating line parameters due to the quantization of parameter space are the major drawbacks of the Hough transform technique. In this paper, to overcome the drawbacks, an iterative algorithm based on a self-organizing map is presented. The self-organizing map can be adaptively learned such that image points are clustered by prominent lines. Through the procedure of the algorithm, a set of lines are sequentially detected one at a time. The algorithm can produce highly precised estimates of line parameters using very small amount of storage memory. Computational results for synthetically generated images are given. The promise of the algorithm is also demonstrated with its application to two natural images of inserts.

Recognize Handwritten Urdu Script Using Kohenen Som Algorithm

  • Khan, Yunus;Nagar, Chetan
    • International Journal of Ocean System Engineering
    • /
    • 제2권1호
    • /
    • pp.57-61
    • /
    • 2012
  • In this paper we use the Kohonen neural network based Self Organizing Map (SOM) algorithm for Urdu Character Recognition. Kohenen NN have more efficient in terms of performance as compare to other approaches. Classification is used to recognize hand written Urdu character. The number of possible unknown character is reducing by pre-classification with respect to subset of the total character set. So the proposed algorithm is attempt to group similar character. Members of pre-classified group are further analyzed using a statistical classifier for final recognition. A recognition rate of around 79.9% was achieved for the first choice and more than 98.5% for the top three choices. The result of this paper shows that the proposed Kohonen SOM algorithm yields promising output and feasible with other existing techniques.

SOFM 신경회로망을 이용한 한국어 음소 인식 (Korean Phoneme Recognition Using Self-Organizing Feature Map)

  • 전용구;양진우;김순협
    • 한국음향학회지
    • /
    • 제14권2호
    • /
    • pp.101-112
    • /
    • 1995
  • 본 논문에서는 패턴 매칭 방법에 근거하여 인식 단위가 음소인 음소 기반 인식 시스템을 구성하였다. 선택한 신경망 구조는 생물학적 신경망인 코호넨(T. Kohonen)의 SOFM(Self-Organizing Feature Map)으로 패턴 매칭 과정 중 클러스터러(clusterer)로 사용하였다. SOFM 신경망은 신호 공간에 대해서 최적의 국소(局所) 해부적 사상(local topographical mapping)에 의한 자기 조직화 과정을 수행하며, 그 결과 인식 문제에 있어서 상당히 높은 정확도를 나타낸다. 따라서 SOFM 신경망은 음소 인식에도 효과적으로 응용될 수 있다. 또한 음소 인식 시스템의 성능 향상을 위해 K-means클러스터링 알고리즘이 결합된 학습 알고리즘을 제안하였다. 제안된 음소 인식 시스템의 성능을 평가하기 위해 먼저, 인식 대상음소는 모음군 17개, 자음의 경우 파열음9개, 마찰음 3개, 파찰음 3개, 유음 및 비음 4개, 음소의 성질이 다른 종성 7개의 음소군으로 모두 43개의 음소를 대상으로 실험하였으며, 각 음소군에 대한 특징 지도를 구성하여 레이블러(labeler)의 기능을 수행하게 하였다. 화자 종속 인식 실험 결과 $87.2\%$의 인식률을 보였으며 제안한 학습법의 빠른 수렴성과 인식률 향상을 확인하였다.

  • PDF

지능로봇 제어를 위한 비전기반 실시간 수신호 인식 시스템 (Real-time Hand Gesture Recognition System based on Vision for Intelligent Robot Control)

  • 양태규;서용호
    • 한국정보통신학회논문지
    • /
    • 제13권10호
    • /
    • pp.2180-2188
    • /
    • 2009
  • 본 논문은 지능로봇의 동작을 제어하기 위해 비전기반의 실시간 수신호를 PCA 및 BP 알고리즘을 이용한 인식시스템을 제안하였다. 수신호 인식은 PCA 알고리즘을 이용한 전처리 단계와 BP 알고리즘을 이용한 인식의 두 단계로 구성한다. PCA 알고리즘은 데이터 분석을 위해 다차원 데이터 집합을 보다 낮은 차원으로 감소시키기 위해 사용되는 기술로 주어진 수신호의 특징인 투영 벡터를 계산하기 위하여 적용되었고, BP 알고리즘은 병렬 구조를 가지고 있으므로 병렬 분산처리가 가능하고, 처리 속도가 빠르므로 PCA로부터 훈련된 고유 수신호를 학습시켜 수신호를 실시간으로 인식한다. 실험에서는 10종류의 수신호를 PCA 알고리즘만을 사용한 경우와 제안한 PCA 및 BP 알고리즘을 사용한 경우와 인식률을 비교하여 제안한 알고리즘이 우수하다는 것을 보였다.

Chaotic Features for Dynamic Textures Recognition with Group Sparsity Representation

  • Luo, Xinbin;Fu, Shan;Wang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4556-4572
    • /
    • 2015
  • Dynamic texture (DT) recognition is a challenging problem in numerous applications. In this study, we propose a new algorithm for DT recognition based on group sparsity structure in conjunction with chaotic feature vector. Bag-of-words model is used to represent each video as a histogram of the chaotic feature vector, which is proposed to capture self-similarity property of the pixel intensity series. The recognition problem is then cast to a group sparsity model, which can be efficiently optimized through alternating direction method of multiplier algorithm. Experimental results show that the proposed method exhibited the best performance among several well-known DT modeling techniques.