• 제목/요약/키워드: self-powered

검색결과 144건 처리시간 0.025초

압전재료가 부착된 동적 구조물로부터 발생되는 전기력의 해석적인 평가 (Analytical Estimation of Power Generation from Dynamic Structure With Piezoelectric Element)

  • 오재응;윤지현;심현진;이유엽
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.263-263
    • /
    • 2007
  • In the future, self-contained sensors and processing units will need on-board, renewable power supplies to be truly autonomous. One way of supplying such power is through energy harvesting, processes by which ambient forms of energy are converted into electricity. One energy harvesting technique involves converting kinetic energy, in the form of vibrations, into electrical energy through the use of piezoelectric materials. Researchers are currently investigating how piezoelectric materials can be used to harvest power. This study examines the use of auxiliary structures, consisting of a mechanical fixture and a lead zirconate/lead titanate (PZT) piezoelectric element, which can be attached to any boundary conditions vibrating beam of the any boundary conditions. Adjusting various boundary conditions of these structures can maximize the strain induced in the attached PZT element and improve power output.

  • PDF

압전 재료를 이용한 진동에너지 변환 전력발생 시스템 해석 및 설계 (System Analysis and Design for a Vibration Converted Power Generator using Piezo Materials)

  • 금명훈;이승엽;고병식;김경호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.1059-1066
    • /
    • 2003
  • A power generation system are proposed to convert ambient mechanical vibration into electrical energy using cantilever-type piezoelectric materials. The vibration-based power device can be used for self-powered systems without batteries. This paper presents the theoretical analysis for the coupled equations of piezoelectric and structural motions and investigates the dynamic characteristics of the self-power system using transfer function method. The theoretical model is verified by the finite element analysis of the resonance frequency, the dynamic response of the structure and the sensor sensibility. Experimental results measured using a prototype system agrees with the theoretical predictions. The system is shown to produce 2.53㎼ in average. Finally, we perform the optimal design for system variables to maximize output power.

  • PDF

High-Performance Schottky Junction for Self-Powered, Ultrafast, Broadband Alternating Current Photodetector

  • Lim, Jaeseong;Kumar, Mohit;Seo, Hyungtak
    • 한국재료학회지
    • /
    • 제32권8호
    • /
    • pp.333-338
    • /
    • 2022
  • In this work, we developed silver nanowires and a silicon based Schottky junction and demonstrated ultrafast broadband photosensing behavior. The current device had a response speed that was ultrafast, with a rising time of 36 ㎲ and a falling time of 382 ㎲, and it had a high level of repeatability across a broad spectrum of wavelengths (λ = 365 to 940 nm). Furthermore, it exhibited excellent responsivity of 60 mA/W and a significant detectivity of 3.5 × 1012 Jones at a λ = 940 nm with an intensity of 0.2 mW cm-2 under zero bias operating voltage, which reflects a boost of 50 %, by using the AC PV effect. This excellent broadband performance was caused by the photon-induced alternative photocurrent effect, which changed the way the optoelectronics work. This innovative approach will open a second door to the potential design of a broadband ultrafast device for use in cutting-edge optoelectronics.

소프트웨어 정의 라디오를 이용한 전이중 통신 시스템의 연구 (Studying Full-duplex Communication System using Software-defined Radio)

  • 김성환;이웅섭;류종열;반태원
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.290-296
    • /
    • 2020
  • 본 논문에서는 이동성이 전이중 라디오의 성능에 미치는 영향을 분석한다. 이를 위해 배터리로 전원 공급이 가능하여 이동환경에서 동작이 가능한 소프트웨어 정의 라디오를 사용하여 전이중 라디오 원형을 구현하였다. 또한 다중 안테나 기반 전이중 라디오와 서큘레이터기반 전이중 라디오를 모두 고려하여 두 경우의 간섭 제거 성능을 비교하였다. 끝으로 이동성이 전이중 라디오 시스템의 자기간섭제거 성능에 부정적인 영향을 미침을 보이고, 자기간섭제거 필터의 갱신주기가 성능에 미치는 영향을 분석한다. 특히 갱신주기를 약 1000배 줄였을 때, 자기 간섭의 전력이 서큘레이터 기반 전이중 라디오는 5.7dB 두 안테나 기반 전이중 라디오는 3.1dB 감소하는 결과를 얻었다.

ULP 자기유지 센서노드 시스템의 시뮬레이션 (Simulation of ULP Self-Sustaining Sensor Node System)

  • 김윤호;성영락;오하령;박준석
    • 한국통신학회논문지
    • /
    • 제34권12B호
    • /
    • pp.1435-1443
    • /
    • 2009
  • 본 논문에서는 에너지 수확 센서 네트워크 시스템을 DEVS 형식론을 이용해서 시뮬레이션하고 모델링한다. 이 시스템은 주전원이나 배터리를 사용하는 싱크(마스터(master)) 노드와 에너지 수확 소자로부터 전원을 공급 받는 센서(slave) 노드로 구성 된다. 시뮬레이션을 위해 (i) 슬레이브 노드에서 에너지 수확하고 저장하는 회로의 동작을 연속적인 구간들로 분할한 후에 각 구간을 이산적인 상태로 표현하고, (ii) 마스터 노드와 슬레이브 노드의 컴포넌트들의 동작의 관계를 면밀하게 분석하여, (iii) 분석된 결과를 DEVS 형식론을 이용하여 모델링하고 시뮬레이션 한다.

신체 힘에 의해 동작되는 부분 의수를 위한 부족구동 손가락 메커니즘 (Underactuated Finger Mechanism for Body-Powered Partial Prosthesis)

  • 윤덕찬;이건;최영진
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.193-204
    • /
    • 2016
  • This paper presents an anthropomorphic finger prosthesis for amputees whose proximal phalanx is mutilated. The finger prosthesis to be proposed is able to make the amputees to perform the natural motion such as flexion/extension as well as self-adaptive grasping motion as if normal human finger does. The mechanism of finger prosthesis with three degrees-of-freedom (DOFs) consists of two five-bar and one four-bar linkages. Two passive components composed of torsional spring and mechanical stopper and only one active joint are employed in order to realize an underactuation. Each passive component is installed into the five-bar linkage. In order to activate the finger prosthesis, it is required for the user to flex and extend the remaining proximal phalanx on the metacarpophalangeal (MCP) joint, not an electric motor. Thus the finger prosthesis conducts not only the natural motion according to his/her intention but also the grasping motion through the deformation of springs by the object for human finger-like behavior. In order to reveal the operation principle of the proposed mechanism, kinematic analysis is performed for the linkage design. Finally both simulations and experiments are conducted in order to reveal the design feasibility of the proposed finger mechanism.

컨베이어 진동을 이용한 IDE 적층 압전 캔틸레버 발전 소자의 무선 센서 응용 연구 (A Study on the Characteristics of Wireless Sensor Powered by IDE Embedded Piezoelectric Cantilever Generators Using Conveyor Vibration)

  • 김창일;이민선;조정호;백종후;장용호;최범진;손천명;서덕기;정영훈
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.769-775
    • /
    • 2016
  • Characteristics of a wireless sensor powered by the IDE (interdigitated electrode) embedded piezoelectric cantilever generator were analyzed in order to evaluate its potential for use in wireless sensor applications. The IDE embedded piezoelectric cantilever was designed and fabricated to have a self-resonance frequency of 126 Hz and acceleration of 1.57 G, respectively, for the mechanical resonance with a practical conveyor system in a thermal-power plant. It produced maximum output power of 2.81 mW under the resistive load of $160{\Omega}$ at 126 Hz. The wireless sensor module is electrically connected to a rectifier capacitor with capacity of 0.68 farad and 3.8 V for power supply by the piezoelectric cantilever generator. The unloaded capacitor could be charged as a rate of approximately $365{\mu}V/s$ while the capacitor exhibited that of 0.997 mV/min. during communication under low duty cycle of 0.2%. Therefore, it is considered that the fabricated IDE embedded piezoelectric cantilever generator can be used for wireless sensor applications.

다공성 압전 스펀지를 이용한 플렉서블 에너지 하베스팅 소자 개발 (Flexible Energy Harvesting Device Based on Porous Piezoelectric Sponge)

  • 허동훈;현동열;박성철;박귀일
    • 한국재료학회지
    • /
    • 제32권11호
    • /
    • pp.508-514
    • /
    • 2022
  • Piezoelectric composite films which are enabled by inorganic piezoelectric nanomaterials-embedded polymer, have attracted enormous attention as a sustainable power source for low powered electronics, because of their ease of fabrication and flexible nature. However, the absorption of applied stress by the soft polymeric matrices is a major issue that must be solved to expand the fields of piezoelectric composite applications. Herein, a flexible and porous piezoelectric composite (piezoelectric sponge) comprised of BaTiO3 nanoparticles and polydimethylsiloxane was developed using template method to enhance the energy conversion efficiency by minimizing the stress that vanishes into the polymer matrix. In the porous structure, effective stress transfer can occur between the piezoelectric active materials in compression mode due to direct contact between the ceramic particles embedded in the pore-polymer interface. The piezoelectric sponge with 30 wt% of BaTiO3 particles generated an open-circuit voltage of ~12 V and a short-circuit current of ~150 nA. A finite element method-based simulation was conducted to theoretically back up that the piezoelectric output performance was effectively improved by introducing the sponge structure. Furthermore, to demonstrate the feasibility of pressure detecting applications using the BaTiO3 particles-embedded piezoelectric sponge, the composite was arranged in a 3 × 3 array and integrated into a single pressure sensor. The fabricated sensor array successfully detected the shape of the applied pressure. This work can provide a cost-effective, biocompatible, and structural strategy for realizing piezoelectric composite-based energy harvesters and self-powered sensors with improved energy conversion efficiency.

자가발전 심장박동기를 위한 에너지 수확 플랫폼 개발 (Development of Energy Harvesting Technologies Platform for Self-Power Rechargeable Pacemaker Medical Device.)

  • 박현문;이정철;김병수
    • 한국전자통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.619-626
    • /
    • 2019
  • 나노 공정기술을 이용한 반도체 및 회로기술의 발전은 의료용 삽입형 기기(MID)의 소형화, 감도, 수명, 신뢰성을 더욱 향상했지만, 최근 MID의 지속적인 동작을 위한 전원의 지속적인 제공 여부가 중요한 도전과제 중 하나이다. 이러한 이유로 신체 내에서 다양한 생체 역학 에너지를 활용하는 자체 전원 이식형 의료기기가 최근에 많이 연구되고 있다. 본 논문에서는 TENG를 이용한 자가발전을 통해 재충전이 가능한 심장박동기를 개발하였다. 그리고 우리는 대형동물의 동작에 따라 삽입된 심장박동기에 내장된 TENG의 발전을 검증하였다. 동물의 움직임으로부터 수집되는 전력은 2.47V로 심장박동기에 센싱을 위해 필요한 전압(1.35V)보다 높은 전원을 획득할 수 있었다.

무선 상태감시 시스템용 진동 기반 에너지 획득 장치 (Vibration-based Energy Harvester for Wireless Condition Monitoring System)

  • 조성원;손종덕;양보석;최병근
    • 한국소음진동공학회논문집
    • /
    • 제19권4호
    • /
    • pp.393-399
    • /
    • 2009
  • Historically, industrial condition monitoring has been performed by costly hard-wired sensors or infrequent checks by maintenance personnel equipped with hand held monitoring equipment. Self- powered wireless condition monitoring systems provides on-line monitoring of critical plant and machinery providing major operating cost benefits. A vibration energy harvester(VEH) is a device that converts kinetic energy occurred by machine vibration into useable electrical energy. Using VEHs to power wireless monitoring systems can yield significant benefits: increased reliability, lower life time costs and no battery disposal issues, etc. This paper proposes the novel prototype design and manufacturing of a VEH that can eliminate the effect by failed batteries.