Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.12.769

A Study on the Characteristics of Wireless Sensor Powered by IDE Embedded Piezoelectric Cantilever Generators Using Conveyor Vibration  

Kim, Chang-il (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Min-seon (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Cho, Jung-ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Paik, Jong-hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Jang, Yong-ho (Technology & Research Center, Senbool Corporation)
Choi, Beom-jin (Technology & Research Center, Senbool Corporation)
Son, Cheon-myoung (Power Transmission and Substation IT Research Group, KEPCO KDN)
Seo, Duk-gi (Power Transmission and Substation IT Research Group, KEPCO KDN)
Jeong, Young-hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.12, 2016 , pp. 769-775 More about this Journal
Abstract
Characteristics of a wireless sensor powered by the IDE (interdigitated electrode) embedded piezoelectric cantilever generator were analyzed in order to evaluate its potential for use in wireless sensor applications. The IDE embedded piezoelectric cantilever was designed and fabricated to have a self-resonance frequency of 126 Hz and acceleration of 1.57 G, respectively, for the mechanical resonance with a practical conveyor system in a thermal-power plant. It produced maximum output power of 2.81 mW under the resistive load of $160{\Omega}$ at 126 Hz. The wireless sensor module is electrically connected to a rectifier capacitor with capacity of 0.68 farad and 3.8 V for power supply by the piezoelectric cantilever generator. The unloaded capacitor could be charged as a rate of approximately $365{\mu}V/s$ while the capacitor exhibited that of 0.997 mV/min. during communication under low duty cycle of 0.2%. Therefore, it is considered that the fabricated IDE embedded piezoelectric cantilever generator can be used for wireless sensor applications.
Keywords
Piezoelectrics; IDE; Generator; Actuator; Wireless sensor; Vibration; Conveyor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. Culler, D. Estrin, and M. Srivastava, IEEE Computer Society, 37, 41 (2004). [DOI: https:/doi.org/10.1109/MC.2004.93]   DOI
2 E. M. Yeatman, Proc. Int'1 Workshop Wearable and Implantable Body Sensor Networks (London, England, 2004) p. 20.
3 S. W. Arms, C. P. Townsend, D. L. Churchill, J. H. Galbreath, and S. W. Mundell, Proc. SPIE Int'1 Symposium on Smart Structures & Smart Materials, (San Diego, USA, 2005) p. 267.
4 S. Priya and D. J. Inman, Energy Harvesting Technologies (Springer, New York, 2009) p. 195. [DOI: https:/doi.org/10.1007/978-0-387-76464-1]
5 J. M. Gilbert and F. Balouchi, International Journal of Automation and Computing, 5, 334 (2008). [DOI: https:/doi.org/10.1007/s11633-008-0334-2]   DOI
6 S. Roundy, P. K. Wright, and J. Rabaey, Computer Communications, 26, 1131 (2003). [DOI: https:/doi.org/10.1016/S0140-3664(02)00248-7]   DOI
7 D. L. Churchill, M. J. Hamel, C. P. Townsend and S. W. Arms, Proc. SPIE 5055, Smart Structures and Materials 2003: Smart Electronics, MEMS, BioMEMS, and Nanotechnology (San Diego, USA, 2003). [DOI: https:/doi.org/10.1117/12.483591]   DOI
8 J. A. Paradiso and M. Feldmeier, Ubiquitous 2001: Ubiquitous Computing (Springer, New York, 2001) p. 299. [DOI: https:/doi.org/10.1007/3-540-45427-6_25]
9 R. D. Kornbluh, R. Pelrine, Q. Pei, R. Heydt, S. Stanford, S. Oh, and J. Eckerle, Proc. SPIE 4698, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies (San Diego, USA, 2002) p. 254.
10 Y. Zou, L. Tong, and G. P. Steven, Journal of Sound and Vibration, 230, 357 (2000). [DOI: https:/doi.org/10.1006/jsvi.1999.2624]   DOI
11 S. B. Park, D. H. Han, and L. H. Kang, Composites Research, 27, 141 (2014). [DOI: https:/doi.org/10.7234/composres.2014.27.4.141]   DOI
12 D. H. Han, L. H. Kang, J. Thayer, and C. Farrar, Composites Research, 28, 155 (2015). [DOI: https:/doi.org/10.7234/composres.2015.28.4.155]   DOI
13 S. Meninger, J.O.M. Miranda, R. Amirtharajah, A. P. Chandrakasan, and J. H. Lang, IEEE Trans. Very Large Scale Integration (VLSI) Systems, 9, 64 (2001).   DOI
14 P. D. Mitcheson, T. C. Green, E. M. Yeatman, and A. S. Holmes, J. Microelectromechanical Systems, 13, 429 (2004).   DOI
15 A. Erturk and D. J. Inman, Piezoelectric Energy Harvesting (John Wiley & Sons, United Kingdom, 2011) p. 301. [DOI: https:/doi.org/10.1002/9781119991151.ch10]
16 M. S. Lee, C. I. Kim, J. S. Yun, W. I. Park, Y. W. Hong, J. H. Paik, J. H. Cho, Y. H. Park, Y. H. Jang, B. J. Choi, and Y. H. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 581 (2016) [DOI: http://dx.doi.org/10.4313/JKEM.2016.29.9.581]   DOI
17 http://lora-alliance.org/