• Title/Summary/Keyword: self-organizing feature map

Search Result 152, Processing Time 0.019 seconds

3D Object Recognition Using SOFM (3D Object Recognition Using SOFM)

  • Cho, Hyun-Chul;Shon, Ho-Woong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.99-103
    • /
    • 2006
  • 3D object recognition independent of translation and rotation using an ultrasonic sensor array, invariant moment vectors and SOFM(Self Organizing Feature Map) neural networks is presented. Using invariant moment vectors of the acquired 16×8 pixel data of square, rectangular, cylindric and regular triangular blocks, 3D objects could be classified by SOFM neural networks. Invariant moment vectors are constant independent of translation and rotation. The recognition rates for the training and testing data were 95.91% and 92.13%, respectively.

  • PDF

Korean Phoneme Recognition Using Self-Organizing Feature Map (SOFM 신경회로망을 이용한 한국어 음소 인식)

  • Jeon, Yong-Koo;Yang, Jin-Woo;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.101-112
    • /
    • 1995
  • In order to construct a feature map-based phoneme classification system for speech recognition, two procedures are usually required. One is clustering and the other is labeling. In this paper, we present a phoneme classification system based on the Kohonen's Self-Organizing Feature Map (SOFM) for clusterer and labeler. It is known that the SOFM performs self-organizing process by which optimal local topographical mapping of the signal space and yields a reasonably high accuracy in recognition tasks. Consequently, SOFM can effectively be applied to the recognition of phonemes. Besides to improve the performance of the phoneme classification system, we propose the learning algorithm combined with the classical K-mans clustering algorithm in fine-tuning stage. In order to evaluate the performance of the proposed phoneme classification algorithm, we first use totaly 43 phonemes which construct six intra-class feature maps for six different phoneme classes. From the speaker-dependent phoneme classification tests using these six feature maps, we obtain recognition rate of $87.2\%$ and confirm that the proposed algorithm is an efficient method for improvement of recognition performance and convergence speed.

  • PDF

Korean Phoneme Recognition Using Self-Organizing Feature Map (SOFM 신경회로망을 이용한 한국어 음소 인식)

  • 전용구
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.233-237
    • /
    • 1993
  • 본 논문에서는 패턴 매칭 방법에 근거하여 인식 단위가 음소인 음소 기반 인식 시스템을 구성하였다. 선택한 신경망 구조는 생물학적 신경망인 코호넨(T. Kohonen)의 SOFM(Self-Organizing Feature Map)으로 패턴 매칭 과정 중 cluster로 사용하였다. SOFM 신경망은 신호 공간에 대해서 최적의 국소(局所) 해부적 사사에 의한 자기 조직화 과정을 수행하며, 그 결과 인식 문제에 있어서 상당히 높은 정확도를 나타낸다. 따라서 SOFM 신경망은 음소 인식에도 효과적으로 응용될 수 있다. 또한 음소 인식 시스템의 성능 향상을 위해 K-means 클러스터링 알고리즘이 결합된 학습 알고리즘을 제안하였다. 제안된 음소 인식 시스템의 성능을 평가하기 위해, 먼저, 우리말 음소들을 모음, 파열음, 마찰음, 파찰음, 유음 및 비음, 종성의 6개 음소군으로 분류하고 각 음소군에 대한 특징 지도를 구성하여 labeler의 기능을 수행하게 하였다. 화자 종속 인식실험 결과 87.2%의 인식률을 보였으며 제안한 학습법의 빠른 수렴성과 인식률 향상을 확인하였다.

  • PDF

A New Abnormal Yields Detection Methodology in the Semiconductor Manufacturing Process (반도체 제조공정에서의 이상수율 검출 방법론)

  • Lee, Jang-Hee
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.1
    • /
    • pp.243-260
    • /
    • 2008
  • To prevent low yields in the semiconductor industry is crucial to the success of that industry. However, to prevent low yields is difficult because of too many factors to affect yield variation and their complex relation in the semiconductor manufacturing process. This study presents a new efficient detection methodology for detecting abnormal yields including high and low yields, which can forecast the yield level of a production unit (namely a lot) based on yield-related feature variables' behaviors. In the methodology, we use C5.0 to identify the yield-related feature variables that are the combination of correlated process variables associated with yield, use SOM (Self-Organizing Map) neural networks to extract and classify significant patterns of past abnormal yield lots and finally use C5.0 to generate classification rules for detecting abnormal yield lot. We illustrate the effectiveness of our methodology using a semiconductor manufacturing company's field data.

  • PDF

A Study on the Digital Hardware Implementation of Self-Organizing feature Map Neural Network with Constant Adaptation Gain and Binary Reinforcement Function (일정 학습계수와 이진 강화함수를 가진 SOFM 신경회로망의 디지털 하드웨어 구현에 관한 연구)

  • 조성원;석진욱;홍성룡
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.402-408
    • /
    • 1997
  • 일정 학습계수와 이진 강화함수를 지닌 자기조직화 형상지도(Self-Organizing Feature Map)신경회로망을 FPGA위에 하드웨어로 구현하였다. 원래의 SOFM 알고리즘에서 학습계수가 시간 종속형인데 반하여, 본 논문에서 하드웨어로 구현한 알고리즘에서는 학습계수가 일정인 값으로 고정되며 이로 인한 성능저하를 보상하기 위하여 이진 강화함수를 부가하였다. 제안한 알고리즘은 복잡한 곱셈 연산을 필요로 하지 않으므로 하드웨어 구현시 보다 쉽게 구현 가능한 특징이 있다. 1개의 덧셈/뺄셈기와 2개의 덧셈기로 구성된 단위 뉴런은 형대가 단순하면서 반복적이므로 하나의 FPGA위에서도 다수의 뉴런을 구현 할 수 있으며 비교적 소수의 제어 신호로서 이들을 모두 제어 가능할 수 있도록 설계하였다. 실험결과 각 구성부분은 모두 이상 없이 올바로 동작하였으며 각 부분이 모두 종합된 전체 시스템도 이상 없이 동작함을 알 수 있었다.

  • PDF

A Global Path Planning of Mobile Robot Using Modified SOFM (수정된 SOFM을 이용한 이동로봇의 전역 경로계획)

  • Yu Dae-Won;Jeong Se-Mi;Cha Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.473-479
    • /
    • 2006
  • A global path planning algorithm using modified self-organizing feature map(SOFM) which is a method among a number of neural network is presented. The SOFM uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors of the 2-dimensional mesh, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward the opposite direction of input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.

Low Sit Rate Image Coding using Neural Network (신경망을 이용한 저비트율 영상코딩)

  • 정연길;최승규;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.579-582
    • /
    • 2001
  • Vector Transformation is a new method unified vector quantization and coding. So far, codebook generation applied to coding was LBG algorithm. But using the advantage of SOFM(Self-Organizing Feature Map) based on neural network can improve a system's performance. In this paper, we generated VTC(Vector Transformation Coding) codebook applied with SOFM algorithm and compare the result for several coding rates with LBG algorithm. The problem of Vector quantization is complicated calculation and codebook generation. So, to solve this problem, we used neural network approach method.

  • PDF

Detection of Characteristics by Pattern Classification of Water Quality and Runoff Data in a River (하천의 수질 및 유량자료의 패턴분류에 의한 특성 파악)

  • Park, Sung-Chun;Jin, Young-Hoon;Roh, Kyong-Bum;Kim, Yong-Gu;Lee, Yong-Hui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1380-1384
    • /
    • 2010
  • 현재 환경부에서는 수질오염총량관리제를 위하여 각 단위유역의 말단지점에서 8일 간격으로 수질 및 유량을 측정하고 있으며, 이 자료들을 공개하고 있다. 이러한 양질의 자료의 활용성을 제고하기 위해서는 무엇보다도 자료의 분석을 위한 다양한 기법이 개발되고 제안되어야 한다. 따라서 본 연구에서는 수질 및 유량자료를 동시에 적용하여 두 자료 사이의 관계를 조사하고 특성을 파악하기 위하여 자기조직화 특성지도(Self-Organizing Feature Map: SOFM) 이론을 적용하였다. 시행착오법에 의해 적정한 SOFM 구조를 결정하였으며, 그 결과 $4{\times}4$ 구조의 육각형 배열을 갖는 구조를 이용하였다. SOFM에 의해 분류된 3개의 패턴 중 패턴-1은 유량자료의 크기에 의해 분류되었고, 패턴-2와 패턴-3은 BOD 농도의 크기에 따라 분류된 것으로 파악되었다. 따라서 SOFM의 적용에 의한 자료의 분류를 수행하고, 그 분류기준을 파악할 경우 SOFM의 자료 분석 도구로서의 활용성이 더욱 높아질 것으로 판단된다.

  • PDF

Machine Layout Decision Algorithm for Cell Formation Problem Using Self-Organizing Map (자기조직화 신경망을 이용한 셀 형성 문제의 기계 배치순서 결정 알고리듬)

  • Jeon, Yong-Deok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.2
    • /
    • pp.94-103
    • /
    • 2019
  • Self Organizing Map (SOM) is a neural network that is effective in classifying patterns that form the feature map by extracting characteristics of the input data. In this study, we propose an algorithm to determine the cell formation and the machine layout within the cell for the cell formation problem with operation sequence using the SOM. In the proposed algorithm, the output layer of the SOM is a one-dimensional structure, and the SOM is applied to the parts and the machine in two steps. The initial cell is formed when the formed clusters is grouped largely by the utilization of the machine within the cell. At this stage, machine cell are formed. The next step is to create a flow matrix of the all machine that calculates the frequency of consecutive forward movement for the machine. The machine layout order in each machine cell is determined based on this flow matrix so that the machine operation sequence is most reflected. The final step is to optimize the overall machine and parts to increase machine layout efficiency. As a result, the final cell is formed and the machine layout within the cell is determined. The proposed algorithm was tested on well-known cell formation problems with operation sequence shown in previous papers. The proposed algorithm has better performance than the other algorithms.

A Self Creating and Organizing Neural Network (자기 분열 및 구조화 신경회로망)

  • 최두일;박상희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.533-540
    • /
    • 1992
  • The Self Creating and Organizing (SCO) is a new architecture and one of the unsupervized learning algorithm for the artificial neural network. SCO begins with only one output node which has a sufficiently wide response range, and the response ranges of all the nodes decrease automatically whether adapting the weights of existing node or creating a new node. It is compared to the Kohonen's Self Organizing Feature Map (SOFM). The results show that SCONN has lots of advantages over other competitive learning architecture.

  • PDF