• Title/Summary/Keyword: self-assembled layer

Search Result 140, Processing Time 0.028 seconds

Tuning Electrical Performances of Organic Charge Modulated Field-Effect Transistors Using Semiconductor/Dielectric Interfacial Controls (유기반도체와 절연체 계면제어를 통한 유기전하변조 트랜지스터의 전기적 특성 향상 연구)

  • Park, Eunyoung;Oh, Seungtaek;Lee, Hwa Sung
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • Here, the surface characteristics of the dielectric were controlled by introducing the self-assembled monolayers (SAMs) as the intermediate layers on the surface of the AlOx dielectric, and the electrical performances of the organic charge modulated transistor (OCMFET) were significantly improved. The organic intermediate layer was applied to control the surface energy of the AlOx gate dielectric acting as a capacitor plate between the control gate (CG) and the floating gate (FG). By applying the intermediate layers on the gate dielectric surface, and the field-effect mobility (μOCMFET) of the OCMFET devices could be efficiently controlled. We used the four kinds of SAM materials, octadecylphosphonic acid (ODPA), butylphosphonic acid (BPA), (3-bromopropyl)phosphonic acid (BPPA), and (3-aminopropyl)phosphonic acid (APPA), and each μOCMFET was measured at 0.73, 0.41, 0.34, and 0.15 cm2V-1s-1, respectively. The results could be suggested that the characteristics of each organic SAM intermediate layer, such as the length of the alkyl chain and the type of functionalized end-group, can control the electrical performances of OCMFET devices and be supported to find the optimized fabrication conditions, as an efficient sensing platform device.

Methanol Barriers Derived from Layer-by-Layer Assembly of Poly(ethersulfone)s for High Performance Direct Methanol Fuel Cells

  • Ok, Jung-Lim;Kim, Dong-Wook;Lee, Chang-Jin;Choi, Won-Choon;Cho, Sung-Min;Kang, Yong-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.842-846
    • /
    • 2008
  • Layer-by-layer assembled multilayers of poly(ethersulfone)s were deposited on the surface of Nafion membrane for the application of direct methanol fuel cells (DMFC). Aminated poly(ethersulfone) (APES) and sulfonated poly(ethersulfone) (SPES) were used as a polycation and a polyanion for fabrication of the multilayer films. UV/Vis absorption spectroscopy verified a linear build-up of the multilayers of APES and SPES on the surface of Nafion. Thin multilayer films deposited on the Nafion membrane enabled methanol permeability of the membrane to decrease by 78% in comparison with the pristine Nafion. The performance of DMFCs in concentrated methanol was highly enhanced by using the multilayer modified Nafion.

Interfacial Layer Control in DSSC

  • Lee, Wan-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.75-75
    • /
    • 2011
  • Recently, dye-sensitized solar cell (DSSC) attracts great attention as a promising alternative to conventional silicon solar cells. One of the key components for the DSSC would be the nanocrystalline TiO2 electrode, and the control of interface between TiO2 and TCO is a highly important issue in improving the photovoltaic conversion efficiency. In this work, we applied various interfacial layers, and analyzed their effect in enhancing photovoltaic properties. In overall, introduction of interfacial layers increased both the Voc and Jsc, since the back-reaction of electrons from TCO to electrolyte could be blocked. First, several metal oxides with different band gaps and positions were employed as interfacial layer. SnO2, TiO2, and ZrO2 nanoparticles in the size of 3-5 nm have been synthesized. Among them, the interfacial layer of SnO2, which has lower flat-band potential than that of TiO2, exhibited the best performance in increasing the photovoltaic efficiency of DSSC. Second, long-range ordered cubic mesoporous TiO2 films, prepared by using triblock copolymer-templated sol-gel method via evaporation-induced self-assembly (EISA) process, were utilized as an interfacial layer. Mesoporous TiO2 films seem to be one of the best interfacial layers, due to their additional effect, improving the adhesion to TCO and showing an anti-reflective effect. Third, we handled the issues related to the optimum thickness of interfacial layers. It was also found that in fabricating DSSC at low temperature, the role of interfacial layer turned out to be a lot more important. The self-assembled interfacial layer fabricated at room temperature leads to the efficient transport of photo-injected electrons from TiO2 to TCO, as well as blocking the back-reaction from TCO to I3-. As a result, fill factor (FF) was remarkably increased, as well as increase in Voc and Jsc.

  • PDF

Effect of Hydrophobizing Method on Corrosion Resistance of Magnesium Alloy with Plasma Electrolytic Oxidation (소수성 처리 방법에 따른 플라즈마 전해 산화 처리된 마그네슘 합금의 내식성)

  • Joo, Jaehoon;Kim, Donghyun;Jeong, Chanyoung;Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.96-102
    • /
    • 2019
  • Magnesium and its alloys are prone to be corroded, thus surface treatments improving corrosion resistance are always required for practical applications. As a surface treatment of magnesium alloys, plasma electrolytic oxidation (PEO), creating porous stable oxide layer by a high voltage discharge in electrolyte, enhances the corrosion resistance. However, due to superhydrophilicity of the porous oxide layer, which easily allow the penetration of corrosive media toward magnesium alloys substrate, post-treatments inhibiting the transfer of corrosive media in porous oxide layer are required. In this work, we employed a hydrophobizing method to enhance the corrosion resistance of PEO treated Mg alloy. Three types of hydrophobizing techniques were used for PEO layer. Thin Teflon coating with solvent evaporation, self-assembled monolayer (SAM) coating of octadecyltrichlorosilane (OTS) based on solution method and SAM coating of perfluorodecyltrichlorosilane (FDTS) based on vacuum method significantly enhances corrosion resistance of PEO treated Mg alloy with reducing the contact of water on the surface. In particular, the vacuum based FDTS coating on PEO layer shows the most effective hydrophobicity with the highest corrosion resistance.

Fabrication of Micropattern by Microcontact Printing (미세접촉인쇄기법을 이용한 미세패턴 제작)

  • 조정대;이응숙;최대근;양승만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1224-1226
    • /
    • 2003
  • In this work, we developed a high resolution printing technique based on transferring a pattern from a PDMS stamp to a Pd and Au substrate by microcontact printing Also, we fabricated various 2D metallic and polymeric nano patterns with the feature resolution of sub-micrometer scale by using the method of microcontact printing (${\mu}$CP) based on soft lithography. Silicon masters for the micro molding were made by e-beam lithography. Composite poly(dimethylsiloxane) (PDMS) molds were composed of a thin, hard layer supported by soft PDMS layer. From this work, it is certificated that composite PDMS mold and undercutting technique play an important role in the generation of a clear SAM nanopattern on Pd and Au substrate.

  • PDF

Fabrication of High Ordered Nano-sphere Array on Curved Substrate by Nanoimprint Lithography (나노임프린트 리소그래피를 이용한 곡면 기판 위에 정렬된 나노 볼 패턴 형성에 관한 연구)

  • Hong, S.H.;Bae, B.J.;Kwak, S.U.;Lee, H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.331-334
    • /
    • 2008
  • The replica of highly ordered nano-sphere array patterns were fabricated using hot embossing method. First, silica nano-sphere array on Si substrate was transferred to PVC film at $130^{\circ}C$ and 7 bar using hot embossing process. Then, silica nano-sphere array on PVC template was removed by soaking the PVC film in buffered oxide etcher. In order to form anti-stiction layer, the PVC template was coated with silicon dioxide layer and self-assembled monolayer. Through UV nanoimprint lithography with the fabricated flexible PVC template, highly ordered nano-sphere array pattern was imprinted on curved substrates with high fidelity.

Molecular Layer Deposition of Organic/Inorganic Nanohybrid Dielectrics for OTFTs

  • Lee, Byeong-Hun;Lee, Gwang-Hyeon;Im, Seong-Il;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.56-56
    • /
    • 2010
  • We report a low-temperature fabrication of organic/inorganic nanohybrid dielectrics for organic thin film transistors. The self-assembled organic layers (SAOLs) were grown by repeated sequential adsorptions of C=C-terminated alkylsilane and metal (Al or Ti) hydroxyl with ozone activation, which was called "molecular layer deposition (MLD)". The $TiO_2$ and $Al_2O_3$ inorganic layers were grown by ALD, which relies on sequential saturated surface reactions resulting in the formation of a monolayer in each sequence and is a potentially powerful method for preparing high quality multicomponent superlattices. The MLD method combined with ALD (MLD-ALD) was applied to fabricate SAOLs-$Al_2O_3$-SAOLs-$TiO_2$ nanohybrid superlattices on polymer substrates at relatively low temperature. The MLD method is an ideal fabrication technique for various flexible electronic devices.

  • PDF

Characterization of biotin-avidin recognition system constructed on the solid substrate

  • Lim, Jung-Hyurk
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.460-468
    • /
    • 2005
  • The biotin-avidin complex, as a model recognition system, has been constructed through N-hydroxysuccinimide(NHS) reaction on a variety of substrates such as a smooth Au film, electrochemically roughened Au electrode and chemically modified mica. Stepwise self-assembled monolayers (SAMs) of biotin-avidin system were characterized by surface-enhanced resonance Raman scattering (SERRS) spectroscopy, atomic force microscopy (AFM) and surface plasmon resonance (SPR). A strong SERRS signal of rhodamine tags labeled in avidin from the SAMs on a roughened gold electrode indicated the successful complex formation of stepwise biotin-avidin recognition system. AFM images showed the circular shaped avidin aggregates (hexamer) with ca. $60{\AA}$ thick on the substrate, corresponding to one layer of avidin. The surface coverage and concentration of avidin molecules were estimated to be 90% and $7.5{\times}10^{-12}mol/cm^2$, respectively. SPR technique allowed one to monitor the surface reaction of the specific recognition with high sensitivity and precision.

Organic Memory Device Using Self-Assembled Monolayer of Nanoparticles (나노입자 자기조립 단일층을 이용한 유기메모리 소자)

  • Jung, Hunsang;Oh, Sewook;Kim, Yejin;Kim, Minkeun;Lee, Hyun Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.515-520
    • /
    • 2012
  • In this review, the fabrication of silicon based memory capacitor and organic memory thin film transistors (TFTs) was discussed for their potential identification tag applications and biosensor applications. Metal or non-metal nanoparticles (NPs) could be capped with chemicals or biomolecules such as protein and oligo-DNA, and also be self-assembly monolayered on corresponding target biomolecules conjugated dielectric layers. The monolayered NPs were formed to be charging elements of a nano floating gate layer as forming organic memody deivces. In particular, the strong and selective binding events of the NPs through biomolecular interactions exhibited effective electrostatic phenomena in memory capacitors and TFTs formats. In addition, memory devices fabricated as organic thin film transistors (OTFTs) have been intensively introduced to facilitate organic electronics era on flexible substrates. The memory OTFTs could be applicable eventually to the development of new conceptual devices.

Heat-induced coarsening of layer-by-layer assembled mixed Au and Pd nanoparticles

  • Shon, Young-Seok;Shon, Dayeon Judy;Truong, Van;Gavia, Diego J.;Torrico, Raul;Abate, Yohannes
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.57-67
    • /
    • 2014
  • This article shows the coarsening behavior of nanoparticle multilayers during heat treatments which produce larger metallic nanostructures with varying shapes and sizes on glass slides. Nanoparticle multilayer films are initially constructed via the layer-by-layer self-assembly of small and monodispersed gold and/or palladium nanoparticles with different compositions (gold only, palladium only, or both gold and palladium) and assembly orders (compounding layers of gold layers over palladium layers or vice versa). Upon heating the slides at $600^{\circ}C$, the surface nanoparticles undergo coalescence becoming larger nanostructured metallic films. UV-Vis results show a clear reliance of the layering sequence on the optical properties of these metal films, which demonstrates an importance of the outmost (top) layers in each nanoparticle multilayer films. Topographic surface features show that the heat treatments of nanoparticle multilayer films result in the nucleation of nanoparticles and the formation of metallic cluster structures. The results confirm that different composition and layering sequence of nanoparticle multilayer films clearly affect the coalescence behavior of nanoparticles during heat treatments.