• 제목/요약/키워드: self recurrent wavelet neural network

검색결과 23건 처리시간 0.025초

Stable Predictive Control of Chaotic Systems Using Self-Recurrent Wavelet Neural Network

  • Yoo Sung Jin;Park Jin Bae;Choi Yoon Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권1호
    • /
    • pp.43-55
    • /
    • 2005
  • In this paper, a predictive control method using self-recurrent wavelet neural network (SRWNN) is proposed for chaotic systems. Since the SRWNN has a self-recurrent mother wavelet layer, it can well attract the complex nonlinear system though the SRWNN has less mother wavelet nodes than the wavelet neural network (WNN). Thus, the SRWNN is used as a model predictor for predicting the dynamic property of chaotic systems. The gradient descent method with the adaptive learning rates is applied to train the parameters of the SRWNN based predictor and controller. The adaptive learning rates are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of the predictive controller. Finally, the chaotic systems are provided to demonstrate the effectiveness of the proposed control strategy.

자기 회귀 웨이블릿 신경 회로망을 이용한 혼돈 시스템의 일반형 예측 제어 (Generalized Predictive Control of Chaotic Systems Using a Self-Recurrent Wavelet Neural Network)

  • 유성진;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.421-424
    • /
    • 2003
  • This paper proposes the generalized predictive control(GPC) method of chaotic systems using a self-recurrent wavelet neural network(SRWNN). The reposed SRWNN, a modified model of a wavelet neural network(WNN), has the attractive ability such as dynamic attractor, information storage for later use. Unlike a WNN, since the SRWNN has the mother wavelet layer which is composed of self-feedback neurons, mother wavelet nodes of the SRWNN can store the past information of the network. Thus the SRWNN can be used as a good tool for predicting the dynamic property of nonlinear dynamic systems. In our method, the gradient-descent(GD) method is used to train the SRWNN structure. Finally, the effectiveness and feasibility of the SRWNN based GPC is demonstrated with applications to a chaotic system.

  • PDF

자기 회귀 웨이블릿 신경 회로망을 이용한 다이나믹 시스템의 동정: 적응 학습률 기반 수렴성 분석 (Identification of Dynamic Systems Using a Self Recurrent Wavelet Neural Network: Convergence Analysis Via Adaptive Learning Rates)

  • 유성진;최윤호;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.781-788
    • /
    • 2005
  • This paper proposes an identification method using a self recurrent wavelet neural network (SRWNN) for dynamic systems. The architecture of the proposed SRWNN is a modified model of the wavelet neural network (WNN). But, unlike the WNN, since a mother wavelet layer of the SRWNN is composed of self-feedback neurons, the SRWNN has the ability to store the past information of the wavelet. Thus, in the proposed identification architecture, the SRWNN is used for identifying nonlinear dynamic systems. The gradient descent method with adaptive teaming rates (ALRs) is applied to 1.am the parameters of the SRWNN identifier (SRWNNI). The ALRs are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of an SRWNNI. Finally, through computer simulations, we demonstrate the effectiveness of the proposed SRWNNI.

Self-Recurrent Wavelet Neural Network Based Direct Adaptive Control for Stable Path Tracking of Mobile Robots

  • You, Sung-Jin;Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.640-645
    • /
    • 2004
  • This paper proposes a direct adaptive control method using self-recurrent wavelet neural network (SRWNN) for stable path tracking of mobile robots. The architecture of the SRWNN is a modified model of the wavelet neural network (WNN). Unlike the WNN, since a mother wavelet layer of the SRWNN is composed of self-feedback neurons, the SRWNN has the ability to store the past information of the wavelet. For this ability of the SRWNN, the SRWNN is used as a controller with simpler structure than the WNN in our on-line control process. The gradient-descent method with adaptive learning rates (ALR) is applied to train the parameters of the SRWNN. The ALR are derived from discrete Lyapunov stability theorem, which are used to guarantee the stable path tracking of mobile robots. Finally, through computer simulations, we demonstrate the effectiveness and stability of the proposed controller.

  • PDF

불확실성을 갖는 비선형 시스템의 자기 회귀 웨이블릿 신경망 기반 터미널 슬라이딩 모드 제어 (Self-Recurrent Wavelet Neural Network Based Terminal Sliding Mode Control of Nonlinear Systems with Uncertainties)

  • 이신호;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.315-317
    • /
    • 2006
  • In this paper, we design a terminal sliding mode controller based on neural network for nonlinear systems with uncertainties. Terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time. Also, TSMC has the advantages such as improved performance, robustness, reliability and precision by contrast with classical sliding mode control. For the control of nonlinear system with uncertainties, we employ the self-recurrent wavelet neural network(SRWNN) which is used for the prediction of uncertainties. The weights of SRWNN are trained by adaptive laws based on Lyapunov stability theorem. Finally, we carry out simulations to illustrate the effectiveness of the proposed control.

  • PDF

자기회귀 웨이블릿 신경 회로망을 이용한 TCP 네트워크 혼잡제어 (Congestion Control of TCP Network Using a Self-Recurrent Wavelet Neural Network)

  • 김재만;박진배;최윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.325-327
    • /
    • 2005
  • In this paper, we propose the design of active queue management (AQM) control system using the self-recurrent wavelet neural network (SRWNN). By regulating the queue length close to reference value, AQM can control the congestions in TCP network. The SRWNN is designed to perform as a feedback controller for TCP dynamics. The parameters of network are tunes to minimize the difference between the queue length of TCP dynamic model and the output of SRWNN using gradient-descent method. We evaluate the performances of the proposed AQM approach through computer simulations.

  • PDF

자기회귀 웨이블릿 신경망을 이용한 풍력 발전 시스템의 적응 속도 제어기 설계 (Design of Adaptive Velocity Controller for Wind Turbines Using Self Recurrent Wavelet Neural Network)

  • 송승관;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1691-1692
    • /
    • 2008
  • In this paper, the adaptive neural network technique is proposed to control the speed of wind power generation system. For maximizing generated power effectively, adaptive neural algorithm based on SRWMM(Self Recurrent Wavelet Neural Network) is derived to on-line adjust the excitation winding voltage of the generator. Through computer simulations, it is shown that the proposed method can achieve smooth and asymptotic rotor speed tracking.

  • PDF

자기 회귀 웨이블릿 신경망을 이용한 비선형 시스템의 터미널 슬라이딩 모드 제어 (Terminal Sliding Mode Control of Nonlinear Systems Using Self-Recurrent Wavelet Neural Network)

  • 이신호;최윤호;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1033-1039
    • /
    • 2007
  • In this paper, we design a terminal sliding mode controller based on self-recurrent wavelet neural network (SRWNN) for the second-order nonlinear systems with model uncertainties. The terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time in comparison with the classical sliding mode control (CSMC) method. In addition, the TSMC method has advantages such as the improved performance, robustness, reliability and precision. We employ the SRWNN to approximate model uncertainties. The weights of SRWNN are trained by adaptation laws induced from Lyapunov stability theorem. Finally, we carry out simulations for Duffing system and the wing rock phenomena to illustrate the effectiveness of the proposed control scheme.

이족 로봇의 안정한 걸음새를 위한 자기 회귀 웨이블릿 신경 회로망을 이용한 적응 백스테핑 제어 (Adaptive Backstepping Control Using Self Recurrent Wavelet Neural Network for Stable Walking of the Biped Robots)

  • 유성진;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.233-240
    • /
    • 2006
  • This paper presents the robust control method using a self recurrent wavelet neural network (SRWNN) via adaptive backstepping design technique for stable walking of biped robots with unknown model uncertainties. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the biped robots. The adaptation laws for weights of the SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for on-line controlling biped robots. Computer simulations of a five-link biped robot with unknown model uncertainties verify the validity of the proposed control system.

수중 자율 운동체의 방향 제어를 위한 자기회귀 웨이블릿 신경회로망 기반 적응 백스테핑 제어 (Self-Recurrent Wavelet Neural Network Based Adaptive Backstepping Control for Steering Control of an Autonomous Underwater Vehicle)

  • 서경철;유성진;박진배;최윤호
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.406-413
    • /
    • 2007
  • This paper proposes a self-recurrent wavelet neural network(SRWNN) based adaptive backstepping control technique for the robust steering control of autonomous underwater vehicles(AUVs) with unknown model uncertainties and external disturbance. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the steering model of AUV. The adaptation laws for the weights of SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for the on-line control of AUV. Finally, simulation results for steering control of an AUV with unknown model uncertainties and external disturbance are included to illustrate the effectiveness of the proposed method.