• Title/Summary/Keyword: self healing concrete

Search Result 78, Processing Time 0.025 seconds

Fluidity and strength characteristics of PCC(Powder Compacted Capsule) mixed mortar according to the type of coating material (코팅재 종류에 따른 PCC(Powder Compacted Capsule) 혼입 모르타르의 유동성 및 강도 특성)

  • Lee, Jae-In;Kim, Chae-Young;Park, Jeong-Yeon;Ji, Dong-Min;Kim, Sung-Hoon;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.255-256
    • /
    • 2022
  • As part of a study to alleviate problems caused by cracks in concrete structures, this study compares and analyzes the fluidity and strength characteristics of mortars used by adjusting the mixing ratio of two types of PCC(Powder Compacted Capsule) manufactured by different methods.

  • PDF

Bacteria's Survival Curve on the Surface of Cement Composite (시멘트 복합체 표면의 자기치유 박테리아 생장 곡선)

  • Park, Ji Yoon;Jang, In Dong;Son, Da Som;Yi, Chong Ku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.203-204
    • /
    • 2021
  • Bacteria used in self-healing concrete, which arrest the crack, helps increasing the durability is well known. However, the survival and activity of the bacteria are precisely unknown. In this research, to know the bacteria's survival curve on the surface of the cement composite, bacteria's survival curve has been measured by CFU at different curing days. The survival curve of 3 days and 7 days curing does not show the significant differences in their survival tendency. However, the slope of death phase of 7 days curing was steeper than the 3 days of curing. This research was focused on the death phase but for further research, set of interval time will be reduced and observe the lag phase and exponential phase.

  • PDF

Learning Experiences in Expressive Writing to Improve Psychological and Emotional Wellbeing

  • Kapseon KIM
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.1
    • /
    • pp.43-50
    • /
    • 2024
  • Purpose: People must express their feelings and thoughts to maintain mental health and stability. Expressing one's emotions, experiences, and thoughts in writing relieves inner feelings, promotes self-exploration, and improves individual well-being, resulting in a pleasant state on physical, mental, and social levels. This study aims to reveal the learning experiences of university students who participated in a self-expressive writing course to improve their well-being. Method: To explore the learning experiences of university students who took a self-expressive writing course, this study used qualitative research methods to analyze the students' written reflection notes. Results: Self-expressive writing was found to resolve university students' negative emotions, regulate their emotions, improve their self-reflection and self-awareness, contributing to their problem-solving skills and ability to set new goals, and strengthen their social communication. The meaning of this class experience can be summarized as healing, awareness, reflection, change, and growth. Conclusion: The results of this study provide concrete data on expressive writing classes and are valuable when designing the writing programs.

Studies on the Performance of Self Healing of Plastic Cracks Using Natural Fibers in Concrete

  • Saraswathy, Velu;Kwon, Seung-Jun;Karthick, Subbiah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.115-127
    • /
    • 2014
  • Addition of fibers in cement or cement concrete may be of current interest, but this is not a new idea or concept. Fibers of any material and shape play an important role in improving the strength and deformation characteristics of the cement matrix in which they are incorporated. The new concept and technology reveal that the engineering advantages of adding fibers in concrete may improve the fracture toughness, fatigue resistance, impact resistance, flexural strength, compressive strength, thermal crack resistance, rebound loss, and so on. The magnitude of the improvement depends upon both the amount and the type of fibers used. In this paper, locally available waste fibers such as coir fibers, sisal fibers and polypropylene fibers have incorporated in concrete with varying percentages and l/d ratio and their effect on compressive, split, flexural, bond and impact resistance have been reported.

Water Permeability Performance Evaluation of Mortar Containing Crack Self-healing Mineral Admixtures (균열 자기치유 재료 혼입 모르타르의 투수성능 평가)

  • Lee, Woong-Jong;Hwang, Ji-Soon;Ahn, Sang-Wook;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.463-469
    • /
    • 2016
  • In this paper, compressive strength and water permeability performance for two types of crack self-healing materials such as SH-PO-0 composed of mineral admixtures(expansive agent, swelling material and crystal growth agent) and SH-PO-(5, 15, 30) blended with SH-PO-0 and phosphate additive(PO) dissolving easily calcium ion, were evaluated. The test results show that the water flow of SH-PO-0 decreased steeply at the early age although compressive strength decreased about 9% at 28 days compared with OPC. The higher PO replacement ratio is, the lower compressive strength and more improved water permeability performance is, and thus, based on such results, adequate PO replacement ratio is 15%. It is also found that the self-healing performance of SH-PO-15 was quite improved at the early ages and however, the performance of SH-PO-15 is similar to one of SH-PO-0 at long-term ages, and 28 days compressive strength of SH-PO-15 decreased about 8% compared with SH-PO-0. In addition, it is confirmed from the analysis of SEM-EDS that calcium ions of SH-PO-15 were crystallized more than those of SH-PO-0.

Effect of Crack Control Strips at Opening Corners on the Strength and Crack Propagation of Downsized Reinforced Concrete Walls (축소 철근콘크리트 벽체의 내력과 균열진전에 대한 개구부모서리 균열제어 띠의 영향)

  • Wang Hye-Rin;Yang Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.40-47
    • /
    • 2022
  • The present study aimed to examine the effectiveness of different techniques for controlling the diagonal cracks at the corners of openings on the strength, deformation, and crack propagation in reinforced concrete walls. The crack control strip proposed in this study, the conventional diagonal steel reinforcing bars, and stress-dispersion curved plates were investigated for controlling the diagonal cracks at the opening corners. An additional crack self-healing function was also considered for the crack control strip. To evaluate the volume change ratio and crack width propagation around the opening, downsized wall specimens with a opening were tested under the diagonal shear force at the opening corner. Test result showed that the proposed crack control strip was more effective in reducing the volume change and controlling the crack width around the opening when compared to the conventional previous methods. The crack control strip with crack healing feature displayed the superior performance in improving the strength of the wall and reducing the crack width while healing cracks occurred in the previous tests.

Self-healing Engineering Materials: II. Inorganic Materials (자기치유 공학재료: II. 무기재료)

  • Kim, Min-Hee;Kang, Dong-Eun;Yoon, Ji-Hwan;Choi, Eun-Ji;Shim, Sang-Eun;Yun, Ju-Ho;Kim, Il
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.85-96
    • /
    • 2011
  • Self-healing materials are a class of smart materials that have the structurally incorporated ability to repair damage caused by mechanical usage over time. A material (polymers, ceramics, metals, etc.) that can intrinsically correct damage caused by normal usage could lower production costs of a number of different industrial processes through longer part lifetime, reduction of inefficiency over time caused by degradation, as well as prevent costs incurred by material failure. The recent announcement from Nissan on the commercial release of scratch healing paints for use on car bodies has gained public interest on such a wonderful property of materials. This article is a second part of healing materials dealing with inorganic engineering materials such as metals, ceramics, and concrete. The healing mechanisms developed for the inorganic materials are to be discussed with the future prospect.

A Study on the Concrete Surface of Durability Advancement and Performance Improvement for the Siliceous Liguid Type of Spread Waterproofing Material (콘크리트 표층부 내구성 증진 및 성능개선을 위한 규산질계 액상형 도포 방수재의 성능 평가 연구)

  • Kim Jin-Sung;Song Je-Young;Park Jin-Sang;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.29-32
    • /
    • 2005
  • It is recognised that a permeability waterproof agent have been extensively used for concrete, in these days. In present paper shows effective practical scheme of a permeability waterproof agent in construction market that is to develope durability of concrete structure as apply to job site through the examination physical and chemical property of a permeability waterproof agent. It is indentified that can be maintain waterproofing performance, moreover it makes satisfactory result of permeation resistance as applying siliceous waterproof agent.

  • PDF

Applications and Prospects of Calcium Carbonate Forming Bacteria in Construction Materials (건축공학분야에서 탄산칼슘형성세균의 응용과 전망)

  • Park, Sung-Jin;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.169-179
    • /
    • 2012
  • Microbiological calcium carbonate precipitation (MCCP) is being applied for the aesthetic restoration of cement buildings destroyed by biochemical processes and to block water penetration into the cement's inner structure. After determining the advantages of this technique, many related studies in the area of architecture concerning the application of microorganisms to improve construction material have been reported in both America and Europe. The techniques compatibility with cement material is especially interesting because of the needed screening of various calcium carbonate forming-bacteria and the required development of their application methods. The purpose of this review is to describe the mechanism of MCCP and related researches with eco-friendly construction materials. Mainly, we describe the methodological studies focused on biodeposition on the surface of building materials and the research trends concerning the addition of microorganisms to improve the durability of cement structures. Additionally, the concepts and technical aspects focused on the development of self-healing smart concrete, with the use of multi-functional bacteria, have been considered.

Tailoring ECC for Special Attributes: A Review

  • Li, Victor C.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.135-144
    • /
    • 2012
  • This article reviews the tailoring of engineered cementitious composites (ECC), a type of high performance fiber reinforced cementitious composites with a theoretical design basis, for special attributes or functions. The design basis, a set of analytic tools built on micromechanics, provides guidelines for tailoring of fiber, matrix, and fiber/matrix interfaces to attain tensile ductility in ECC. If conditions for controlled multiple cracking are disturbed by the need to introduce ingredients to attain a special attribute or function, micromechanics then serve as a systematic and rational means to efficiently recover composite tensile ductility. Three examples of ECCs with attributes of lightweight, high early strength, and self-healing functions, are used to illustrate these tailoring concepts. The fundamental approach, however, is broadly applicable to a wide variety of ECCs designed for targeted fresh and/or hardened characteristics required for specific applications.