• Title/Summary/Keyword: selectivity coefficient

Search Result 100, Processing Time 0.029 seconds

Quantitative analysis of glycerol concentration in red wine using Fourier transform infrared spectroscopy and chemometrics analysis

  • Joshi, Rahul;Joshi, Ritu;Amanah, Hanim Zuhrotul;Faqeerzada, Mohammad Akbar;Jayapal, Praveen Kumar;Kim, Geonwoo;Baek, Insuck;Park, Eun-Sung;Masithoh, Rudiati Evi;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.299-310
    • /
    • 2021
  • Glycerol is a non-volatile compound with no aromatic properties that contributes significantly to the quality of wine by providing sweetness and richness of taste. In addition, it is also the third most significant byproduct of alcoholic fermentation in terms of quantity after ethanol and carbon dioxide. In this study, Fourier transform infrared (FT-IR) spectroscopy was employed as a fast non-destructive method in conjugation with multivariate regression analysis to build a model for the quantitative analysis of glycerol concentration in wine samples. The samples were prepared by using three varieties of red wine samples (i.e., Shiraz, Merlot, and Barbaresco) that were adulterated with glycerol in concentration ranges from 0.1 to 15% (v·v-1), and subjected to analysis together with pure wine samples. A net analyte signal (NAS)-based methodology, called hybrid linear analysis in the literature (HLA/GO), was applied for predicting glycerol concentrations in the collected FT-IR spectral data. Calibration and validation sets were designed to evaluate the performance of the multivariate method. The obtained results exhibited a high coefficient of determination (R2) of 0.987 and a low root mean square error (RMSE) of 0.563% for the calibration set, and a R2 of 0.984 and a RMSE of 0.626% for the validation set. Further, the model was validated in terms of sensitivity, selectivity, and limits of detection and quantification, and the results confirmed that this model can be used in most applications, as well as for quality assurance.

Experimental Study on Reduction of Nitrogen-Containing Compounds Contained in Crude Methylnaphthalene Oil by Solvent Extraction (II) (용매 추출에 의한 조제 메틸나프탈렌유에 함유된 함질소화합물의 저감에 관한 실험적 연구(II))

  • Kang, Ho-Cheol;Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.477-481
    • /
    • 2022
  • As a part of improving the quality of crude methylnaphthalene (CMNO), this study was experimentally examined the reduction of nitrogen-containing compounds (NC) present in the CMNO by solvent extraction. The CMNO was composed of three kinds of NC [quinolone (QU), iso-quinoline (IQU), indole (IN)], three kinds of bicyclic aromatic compound [BAC; naphthalene (NA), 1-methylnaphthalene (1MNA), 2-methylnaphthalene (2MNA)] and biphenyl (BP) etc., in addition to an aqueous formamide solution, which were used as raw materials and a solvent, respectively. The increase in the volume fraction of water to the solvent in the initial state (yw,0) caused a sharp decrease in the distribution coefficient and the yield of NC, but conversely raised the increased selectivity of NC based on 2MNA. The compositions of QU, IQU and IN in the raffinate oil recovered through the equilibrium extraction of batch co-current 5-stage under constant conditions [yw,0 = 0.1, volume fraction of solvent to feed (CMNO) at the initial state = 1, operating temperature = 303 K, liquid-liquid contacting time = 72 h] were reduced by about 51.5%, 55.2%, and 71.8%, respectively, when compared to those of CMNO. From the excellent reduction rate of NC, the formamide extraction method suggested in this study can be expected to be a useful reduction method for NC contained in the CMNO.

Transport Properties of CO2 and CH4 using Poly(ether-block-amide)/GPTMS Hybird Membranes (Poly(ether-block-amide)/GPTMS 하이브리드 분리막을 이용한 이산화탄소와 메탄의 투과특성)

  • Lee, Keun Chul;Kim, Hyunjoon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.653-658
    • /
    • 2016
  • Poly(ether-block-amide)(PEBAX$_{(R)}$) resin is a thermoplastic elastomer combining linear chains of hard-rigid polyamide block interspaced soft-flexible polyether block. It was believed that the hard polyamide block provides the mechanical strength and permselectivity, whereas gas transport occurs primarily through the soft polyether block. The objective of this work was to investigate the gas permeation properties of carbon dioxide and methane for PEBAX$^{(R)}$-1657 membrane, and compare with those obtained for other grade of pure PEBAX$^{(R)}$, PEBAX$^{(R)}$-2533 and PEBAX$^{(R)}$ based hybrid membranes. The hybrid membranes based PEBAX$^{(R)}$ were obtained by a sol-gel process using GPTMS ((3-glycidoxypropyl) trimethoxysilane) as the only inorganic precursor. Molecular structure and morphology of membrane were analyzed by $^{29}Si$-NMR, DSC and SEM. PEBAX$_{(R)}$-2533 membrane exhibited higher gas permeability coefficients than PEBAX$^{(R)}$-1657 membrane. This was explained by the increase of chain mobility. In contrast, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$-1657 membrane was higher than PEBAX$^{(R)}$-2533 membrane. It was explained by the decrease of diffusion selectivity caused by increase of chain mobility. For PEBAX$^{(R)}$/GPTMS hybrid membrane, gas permeability coefficients were decreased with reaction time. Gas permeability coefficient of $CH_4$ was more significantly decreased than $CO_2$. It can be explained by the reduction of chain mobility caused by the sol-gel process, and strong affinity of PEO segment with $CO_2$. Comparing with pure PEBAX$^{(R)}$-1657 membrane, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$/GPTMS hybrid membrane has decreased to 4.5%, and gas permeability coefficient of $CO_2$ has increased 3.5 times.

Residue Studies of Difenoconazole and Thiamethoxam during Cultivation of Sweet Persimmon for Export (수출용 단감에 대한 Difenoconazole과 Thiamethoxam의 잔류특성 연구)

  • Chang, Hee-Ra;Kang, Hae-Rim;Do, Jung-A;Oh, Jae-Ho;Hwang, In-Kyun;Kwon, Ki-Sung;Im, Moo-Hyeog;Kim, Kyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.3
    • /
    • pp.248-254
    • /
    • 2012
  • BACKGROUND: In order to elucidate residual characteristics of difenoconazole and thiamethoxam by treatment to sweet persimmons for one year and to generate the data for the maximum residue limit (MRL) establishment for those pesticides in or on sweet persimmon. METHODS AND RESULTS: Systemic fungicide difenoconazole WP (10% a.i.) and systemic insecticide thiamethoxam WG (10% a.i.) were sprayed onto 12~25-years-old sweet persimmons according to its preharvest interval (PHI), respectively, and then fresh sweet persimmons were harvested at 0, 1, 3, 7, 14, 21 days after treatment from pesticide-sprayed plots at each 3 sites. The analytical methods were evaluated to limit of quantification, linearity, specificity, reproducibility and recoveries. The crop samples were extracted with acetone and performed dichloromethane partition process. The extracted samples of difenoconazole were analyzed by GC-ECD and the thiamethoxam extracted samples were analyzed by HPLC with good sensitivity and selectivity of the method. The average recoveries of difenoconazole ranged from 87.5 to 99.5% with the percentage of coefficient variation in the range 4.1~7.6% at three different spiking levels(0.02, 0.2 and 2.0 mg/kg). And the average recoveries of thiamethoxam and clothianidin ranged from 88.8 to 98.9% and 83.2 to 96.6% with the percentage of coefficient variation in the range 3.6~5.0% and 3.8~9.4% at three different spiking levels(0.02, 0.2 and 2.0 mg/kg), respectively. The residue amounts ranges of difenoconazole were 0.2~0.56 mg/kg and the residue amount was decreased below the MRL level, 1.0 mg/kg, after 1 day harvest. The residue amounts ranges of thiamethoxam were 0.08~0.28 mg/kg and the residue amount was decreased below the MRL level, 0.5 mg/kg, after 1 day harvest. And the residue amount of clothianidin was below then 0.03 mg/kg for only one test site of 14 and 28 day samples. CONCLUSION: As a result, the residual amounts of difenoconazole and thiamethoxam were not exceeded the MRL of established criteria for sweet persimmon. The biological half-lives of difenoconazole and thiamethoxam were 13.6, 19.4, 16.3 and 10.0, 15.3, 14.0 days at each three test sites, respectively.

Development of Analytical Method for the Determination and Identification of Unregistered Pesticides in Domestic for Orange and Brown Rice(I) -Chlorthal-dimethyl, Clomeprop, Diflufenican, Hexachlorobenzene, Picolinafen, Propyzamide- (식품공전 분석법 미설정 농약의 잔류분석법 확립(I) -Chlorthal-dimethyl, Clomeprop, Diflufenican, Hexachlorobenzene, Picolinafen, Propyzamide-)

  • Chang, Hee-Ra;Kang, Hae-Rim;Kim, Jong-Hwan;Do, Jung-A;Oh, Jae-Ho;Kwon, Ki-Sung;Im, Moo-Hyeog;Kim, Kyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.157-163
    • /
    • 2012
  • BACKGROUND: For the safety of imported agricultural products, the study was conducted to develop the analytical method of unregistered pesticides in domestic. The analytical method of 6 pesticides, chlorthal-dimethyl, clomeprop, diflufenican, hexachlorobenzene, picolinafen, and propyzamide, for a fast multi-residue analysis were established for two different type crops, orange and brown rice by GC-ECD and confirmed by mass spectrometry. METHODS AND RESULTS: The analytical method was evaluated to limit of quantification, linearity and recoveries. The crop samples were extracted with acetonitrile and performed cleanup by liquid-liquid partition and Florisil SPE to remove co-extracted matrix. The extracted samples were analyzed by GC-ECD with good sensitivity and selectivity of the method. The limits of quantification (LOQ) range of the method with S/N ratio of 10 was 0.02~0.05 mg/kg for orange and brown rice. The linearity for targeted pesticides were $R^2$ >0.999 at the levels ranged from 0.05 to 10.0 mg/kg. The average recoveries ranged from 74.4% to 110.3% with the percentage of coefficient variation in the range 0.2~8.8% at two different spiking levels (0.02 mg/kg and 0.2 mg/kg, 0.05 mg/kg and 0.5 mg/kg) in brown rice. And the average recoveries ranged from 77.8% to 118.4% with the percentage of coefficient variation in the range 0.2~6.6% at two different spiking levels (0.02 mg/kg and 0.2 mg/kg, 0.05 mg/kg and 0.5 mg/kg) in orange. Final determination was by gas chromatography/mass spectrometry/selected ion monitoring (GC/MS/SIM) to identify the targeted pesticides. CONCLUSION: As a result, this developed analytical method can be used as an official method for imported agricultural products.

Analytical Method for Sodium Polyacrylate in Processed Food Products by Using Size-exclusion Chromatography (Size-exclusion Chromatography를 활용한 가공식품 중 폴리아크릴산나트륨 분석법 확립)

  • Jeong, Eun-Jeong;Choi, Yoo-Jeong;Lee, Gunyoung;Yun, Sang Soon;Lim, Ho Soo;Kim, MeeKyung;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.466-473
    • /
    • 2018
  • An analytical method of sodium polyacrylate in processed food products was developed and monitored by using size-exclusion chromatography. GF-7M HQ column and UV/VIS detector were selected based on peak shape and linearity. Flow rate, column oven temperature, and mobile phase were selected as 0.6 mL/min, $45^{\circ}C$, and 50 mM sodium phosphate buffer of pH 9.0, respectively. Samples for analysis of sodium polyacrylate were extracted with 50 mM sodium phosphate buffer of pH 7.0 for 3 hr at $20^{\circ}C$ and 150 rpm. Analytical method validation revealed proper selectivity and calibration curve was selected in the range of 50-500 mg/L, and correlation coefficient of calibration curve was more than 0.9985. Limit of detection of sodium polyacrylate was 10.95 mg/kg and limit of quantification was 33.19 mg/kg. Accuracy and coefficient of variation for sodium polyacrylate analysis was 99.6-127.6%, 3.0-8.3% for intra-day and 94.3-121.9%, 1.3-2.6% for inter-day, respectively. Sodium polyacrylate was detected in 40 samples among monitored 125 processed food products. Detected contents were less than 0.2%, limited by the Food Additives Code. Results suggest the established size-exclusion chromatography method could be used to analyze sodium polyacrylate in processed food products.

Understanding the Protox Inhibition Activity of Novel 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene Derivatives Using Comparative Molecular Similarity Indices Analysis (CoMSIA) Methodology (비교 분자 유사성 지수분석(CoMSIA) 방법에 따른 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chlore-4-fluorobenzene 유도체들의 Protox 저해 활성에 관한 이해)

  • Song, Jong-Hwan;Park, Kyung-Yong;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.47 no.4
    • /
    • pp.414-421
    • /
    • 2004
  • 3D QSAR studies for protox inhibition activities against root and shoot of the rice plant (Orysa sativa L.) and barnyardgrass (Echinochloa crus-galli) by a series of new 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene derivatives were conducted based on the results (Sung, N. D. et al.'s, (2004) J. Korean Soc. Appl. Biol. Chem. 47(3), 351-356) using comparative molecular similarity indices analysis (CoMSIA) methodology. Four CoMSIA models, without hydrogen bond donor field for the protox inhibition activities against root and shoot of the two plants, were derived from the combination of several fields using steric field, hydrophobic field, hydrogen bond acceptor field, LUMO molecular orbital field, dipole moment (DM) and molar refractivity (MR) as additional descriptors. The predictabilities and fitness of CoMSIA models for protox inhibition activities against barnyard-grass were higher than that of rice plant. The statistical results of these models showed the best predictability of the protox inhibition activities against barnyard-grass based on the cross-validated value $r^2\;_{cv}\;(q^2=0.635{\sim}0.924)$, non cross-validated, conventional coefficient $r^2\;_{ncv.}$ value $(r^2=0.928{\sim}0.977)$ and PRESS value $(0.255{\sim}0.273)$. The protox inhibition activities exhibited a strong correlation with the steric $(5.4{\sim}15.7%)$ and hydrophobic $(68.0{\sim}84.3%)$ factors of the molecules. Particularly, the CoMSIA models indicated that the groups of increasing steric bulk at ortho-position on the C-phenyl ring will enhance the protox inhibition activities against barnyard-grass and subsequently increase the selectivity.

Determination and Validation of an Analytical Method for Dichlobentiazox in Agricultural Products with LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Dichlobentiazox 시험법 개발 및 검증)

  • Gu, Sun Young;Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Kang, Sung Eun;Chung, Yun Mi;Choi, Ha Na;Yoon, Sang Soon;Jung, Young-Hyun;Yoon, Hae Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.2
    • /
    • pp.108-117
    • /
    • 2021
  • BACKGROUND: Dichlobentiazox is a newly registered pesticide in Korea as a triazole fungicide and requires establishment of an official analysis method for the safety management. Therefore, the aim of this study was to determine the residual analysis method of dichlobentiazox for the five representative agricultural products. METHODS AND RESULTS: Three QuEChERS methods were applied to establish the extraction method, and the EN method was finally selected through the recovery test. In addition, various adsorbent agents were applied to establish the clean-up method. As a result, it was found that the recovery of the tested pesticide was reduced when using the d-SPE method with PSA and GCB, but C18 showed an excellent recovery. Therefore this method was established as the final analysis method. For the analysis, LC-MS/MS was used with consideration of the selectivity and sensitivity of the target pesticide and was operated in MRM mode. The results of the recovery test using the established analysis method and inter laboratory validation showed a valid range of 70-120%, with standard deviation and coefficient of variation of less than 3.0% and 11.6%, respectively. CONCLUSION: Dichlobentiazox could be analyzed with a modified QuEChERS method, and the method determined would be widely available to ensure the safety of residual pesticides in Korea.

Determination and Validation of an Analytical Method for Spiropidion and Its Metabolite Spiropidion-enol (SYN547305) in Agricultural Products with LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Spiropidion 및 대사산물 Spiropidion-enol (SYN547305) 시험법 개발 및 검증)

  • Gu, Sun Young;Lee, Su Jung;Shin, Hye-Sun;Kang, Sung Eun;Chung, Yun Mi;Lee, Jung Mi;Jung, Yong-hyun;Moon, Guiim
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.82-94
    • /
    • 2022
  • BACKGROUND: Spiropidion and its metabolite are tetramic acid insecticide and require the establishment of an official analysis method for the safety management because they are newly registered in Korea. Therefore, this study was to determine the analysis method of residual spiropidion and its metabolite for the five representative agricultural products. METHODS AND RESULTS: Three QuEChERS methods (original, AOAC, and EN method) were applied to optimize the extraction method, and the EN method was finally selected by comparing the recovery test and matrix effect results. Various adsorbent agents were applied to establish the clean up method. As a result, the recovery of spiropidion was reduced when using the dispersive-SPE method with MgSO4, primary secondary amine (PSA), graphitized carbon black (GCB) and octadecyl (C18) in soybean. Color interference was minimized by selecting the case including GCB and C18 in addition to MgSO4. This method was established as the final analysis method. LC-MS/MS was used for the analysis by considering the selectivity and sensitivity of the target pesticide and the analysis was performed in MRM mode. The results of the recovery test using the established analysis method and inter laboratory validation showed a valid range of 79.4-108.4%, with relative standard deviation and coefficient of variation were less than 7.2% and 14.4%, respectively. CONCLUSION(S): Spiropidion and its metabolite could be analyzed with a modified QuEChERS method, and the established method would be widely available to ensure the safety of residual insecticides in Korea.

Selection and Validation of an Analytical Method for Trifludimoxazin in Agricultural Products with LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Trifludimoxazin의 시험법 선정 및 검증)

  • Sun Young Gu;Su Jung Lee;So eun Lee;Chae Young Park;Jung Mi Lee;Inju Park;Yun Mi Chung;Gui Hyun Jang;Guiim Moon
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.3
    • /
    • pp.79-88
    • /
    • 2023
  • Trifludimoxazin is a triazinone herbicide that inhibits the synthesis of protoporphyrinogen oxidase (PPO). The lack of PPO damages the cell membranes, leading to plant cell death. An official analytical method for the safety management of trifludimoxazin is necessary because it is a newly registered herbicide in Korea. Therefore, this study aimed to develop a residual analysis method to detect trifludimoxazin in five representative agricultural products. The EN method was established as the final extraction method by comparing the recovery test and matrix effect with those of the QuEChERS method. Various sorbent agents were used to establish the clean-up method, and no differences were observed among them. MgSO4 and PSA were selected as the final clean-up conditions. We used LC-MS/MS considering the selectivity and sensitivity of the target pesticide and analyzed the samples in the MRM mode. The recovery test results using the established analysis method and inter-laboratory validation showed a valid range of 73.5-100.7%, with a relative standard deviation and coefficient of variation less than 12.6% and 14.5%, respectively. Therefore, the presence of trifludimoxazin can be analyzed using a modified QuEChERS method, which is widely available in Korea to ensure the safety of residual insecticides.