Browse > Article
http://dx.doi.org/10.14478/ace.2022.1087

Experimental Study on Reduction of Nitrogen-Containing Compounds Contained in Crude Methylnaphthalene Oil by Solvent Extraction (II)  

Kang, Ho-Cheol (Environmental Resources Research Center, Korea Research Institute of Chemical Technology)
Kim, Su Jin (Department of Chemical Engineering, Chungwoon University)
Publication Information
Applied Chemistry for Engineering / v.33, no.5, 2022 , pp. 477-481 More about this Journal
Abstract
As a part of improving the quality of crude methylnaphthalene (CMNO), this study was experimentally examined the reduction of nitrogen-containing compounds (NC) present in the CMNO by solvent extraction. The CMNO was composed of three kinds of NC [quinolone (QU), iso-quinoline (IQU), indole (IN)], three kinds of bicyclic aromatic compound [BAC; naphthalene (NA), 1-methylnaphthalene (1MNA), 2-methylnaphthalene (2MNA)] and biphenyl (BP) etc., in addition to an aqueous formamide solution, which were used as raw materials and a solvent, respectively. The increase in the volume fraction of water to the solvent in the initial state (yw,0) caused a sharp decrease in the distribution coefficient and the yield of NC, but conversely raised the increased selectivity of NC based on 2MNA. The compositions of QU, IQU and IN in the raffinate oil recovered through the equilibrium extraction of batch co-current 5-stage under constant conditions [yw,0 = 0.1, volume fraction of solvent to feed (CMNO) at the initial state = 1, operating temperature = 303 K, liquid-liquid contacting time = 72 h] were reduced by about 51.5%, 55.2%, and 71.8%, respectively, when compared to those of CMNO. From the excellent reduction rate of NC, the formamide extraction method suggested in this study can be expected to be a useful reduction method for NC contained in the CMNO.
Keywords
Coal tar; Crude methylnaphthalene oil; Nitrogen-containing compounds; Formamide extraction; Equilibrium extraction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Xu, M. Zhang, J. Gao, L. Zhang, S. Zhou, and Y. Wang, Separation of heterocyclic nitrogen compounds from coal tar fractions via ionic liquids: COSMO-SAC screening and experimental study, Chem. Eng. Commun., 206, 1199-1217 (2019).   DOI
2 T. Jiao, X. Zhuang, H. He, L. Zhao, C. Li, H. Chen, and S. Zhang, An ionic liquid extraction process for the separation of indole from wash oil, Green Chem., 17, 3783-3790 (2015).   DOI
3 I. Uemasu, Effect of methanol-water mixture solvent on concentration of indole in coal tar using β-cyclodextrin as complexing agent, J. Jpn Pet. Inst., 34, 371-374 (1991).   DOI
4 L. Zhang, D. Xu, J. Gao, S. Zhou, L. Zhao, and Z. Zhang, Extraction and mechanism for the separation of neutral N-compounds from coal tar by ionic liquids, Fuel, 194, 27-35 (2017).   DOI
5 K. Sakanishi, H. Obata, I. Mochida, and T. Sakaki, Capture and recovery of indole from methylnaphthalene oil in a coninuous supercritical CO2 extraction apparatus over a fixed bed of anion-exchange resin, Ind. Eng. Chem. Res., 35, 335-337 (1996).   DOI
6 K. Sakanishi, H. Obata, I. Mochida, and T. Sakaki, Removal and recovery of quinoline bases from methylnaphthalene oil in a semiconinuous supercritical CO2 separation apparatus with a fixed bed of supported aluminum sulfate, Ind. Eng. Chem. Res., 34, 4118-4124 (1995).   DOI
7 S. J. Kim, Upgrading of wash oil through reduction of nitrogen-containing compounds, Processes, 9, 1869-1877 (2021).   DOI
8 K. Ukegawa, A. Matsumura, Y. Kodera, T. Kondo, T. Nakayama, H. Tanabe, S. Yoshida, and Y. Mito, Solvent extraction of nitrogen compounds from a coal tar fraction. (Part 1). Effect of extraction conditions on the extraction rate and the selectivities of nitrogen compounds. J. Jpn. Pet. Inst., 33, 250-254 (1990).   DOI
9 S. J. Kim, and Y. J. Chun, Separation of nitrogen heterocyclic compounds from model coal tar fraction by solvent extraction, Sep. Sci. Technol., 40, 2095-2109 (2005).   DOI
10 R. Egashira and C. Salim, Solvent extraction of nitrogen heterocyclic compounds contained in coal tar absorption oil fraction - Improvement of separation performance by addition of aluminum chloride to solvent-, J. Jpn Pet. Inst., 44, 178-182 (2001).   DOI
11 S. J. Kim, Y. J. Chun, and H. J. Jeong, Separation and recovery of indole from model coal tar fraction by batch cocurrent 5 stages equilibrium extraction, J. Korean Ind. Eng. Chem., 18, 168-172 (2007).
12 K. Ukegawa, A. Matsumura, Y. Kodera, T. Kondo, T. Nakayama, H. Tanabe, S. Yoshida, and Y. Mito, Solvent extraction of nitrogen compounds from a coal tar fraction (Part I) Effect of extraction conditions on the extraction rate and the selectivities of nitrogen compounds, J. Jpn Pet. Inst., 33, 250-254 (1990).   DOI
13 Y. Kodera, K. Ukegawa, Y. Mito, M. Komoto, E. Ishikawa, and T. Nagayama, Solvent extraction of nitrogen compounds from coal liquids, Fuel, 70, 765-769 (1991).   DOI
14 H. C. Kang and S. J. Kim, Experimental study on reduction of nitrogen-containing compounds contained in crude methylnaphthalene oil by solvent extraction (I): Reduction of nitrogen-containing compounds contained in model crude methylnaphthalene oil of 5 components system, Appl. Chem. Eng., 33, 431-435 (2022).
15 R. Egashira and M. Nagai, Separation of nitrogen heterocyclic compounds contained in coal tar absorption oil fraction by solvent extraction, J. Jpn Pet. Inst., 43, 339-345 (2000).   DOI
16 S. J. Kim, H. C. Kang, Y. S. Kim, and H. J. Jeong, Liquid membrane permeation of nitrogen heterocyclic compounds contained in model coal tar fraction, Bull. Korean Chem. Soc., 31, 1143-1148 (2010).   DOI
17 I. Uemasu and T. Nakayama, Concentration of indole in coal tar using α-cyclodextrin as the host for inclusion complexation, J. Inclus. Phenom. Molec. Recogn. Chem., 7, 327-331 (1989).   DOI
18 I. Mochida, Y. Q. Fei, and K. Sakanishi, Capture and recovery of basic nitrogen species in coal tar pitch, using nickel sulfate as adsorbent, Chem. Lett., 515-518 (1990).