Browse > Article

Understanding the Protox Inhibition Activity of Novel 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene Derivatives Using Comparative Molecular Similarity Indices Analysis (CoMSIA) Methodology  

Song, Jong-Hwan (Cytosine Laboratory, Korea Research Institute of Chemical Technology)
Park, Kyung-Yong (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University)
Sung, Nack-Do (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University)
Publication Information
Applied Biological Chemistry / v.47, no.4, 2004 , pp. 414-421 More about this Journal
Abstract
3D QSAR studies for protox inhibition activities against root and shoot of the rice plant (Orysa sativa L.) and barnyardgrass (Echinochloa crus-galli) by a series of new 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene derivatives were conducted based on the results (Sung, N. D. et al.'s, (2004) J. Korean Soc. Appl. Biol. Chem. 47(3), 351-356) using comparative molecular similarity indices analysis (CoMSIA) methodology. Four CoMSIA models, without hydrogen bond donor field for the protox inhibition activities against root and shoot of the two plants, were derived from the combination of several fields using steric field, hydrophobic field, hydrogen bond acceptor field, LUMO molecular orbital field, dipole moment (DM) and molar refractivity (MR) as additional descriptors. The predictabilities and fitness of CoMSIA models for protox inhibition activities against barnyard-grass were higher than that of rice plant. The statistical results of these models showed the best predictability of the protox inhibition activities against barnyard-grass based on the cross-validated value $r^2\;_{cv}\;(q^2=0.635{\sim}0.924)$, non cross-validated, conventional coefficient $r^2\;_{ncv.}$ value $(r^2=0.928{\sim}0.977)$ and PRESS value $(0.255{\sim}0.273)$. The protox inhibition activities exhibited a strong correlation with the steric $(5.4{\sim}15.7%)$ and hydrophobic $(68.0{\sim}84.3%)$ factors of the molecules. Particularly, the CoMSIA models indicated that the groups of increasing steric bulk at ortho-position on the C-phenyl ring will enhance the protox inhibition activities against barnyard-grass and subsequently increase the selectivity.
Keywords
3D-QSAR; 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzenes; herbicidal activity; rice plant (Orysa sativa L.); barnyard grass (Echinochloa crus-galli); CoMSIA model;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Bauer, N., Fajans, K. and Lewin, S. Z. (1960) Technique of Organic Chemistry, Vol. 1., Part ll, Wissberger, A. (ed.), Interscience, New York, p. 1139
2 Tripos Associates, Inc., 1699 S. Hanley Road, Suite 303, St. Louis, MO 63144-2913, U.S.A., /.http://www.tripos.com/Bookshelf/qsar
3 Sung, N, D., (1989) Solvent dependence and component of linear free energy relationship on the chemical shift of methylene proton in 1-(Phenoxymethyl)benzotriazole derivatives. J. Kor. Chem. Soc. 33(5), 538-544
4 Theodoridis, G., Bahr, J. T., Hotzman, F. W., Sehgel, S. and Suarez, D. P. (2000) New geration of protox-inhibiting herbicides, Crop Prot. 19, 533-535   DOI   ScienceOn
5 Pallett, K. E. (1997) Herbicide target sites, recent trends and new challenges, Proceeding of Brighton Crop Protection Conference-Weeds, pp. 575-578
6 Sung, N. D., Song, J. H., Yang, S. Y. and Park, K. Y. (2004) Understanding the herbicidal activity of novel 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene derivatives as protox inhibitors using comparatives molecular field analyses (CoMFA) methodology, Kor. J. Pest. Sci. 8(3), 151-161
7 Kubinyi, H. (1993) 3D QSAR Drug Design, Theory, Methos and Applications, ESCOM. Leiden
8 Sung, N. D., Song, J. H. and Park, K. Y. (2004) Understanding the herbicidal activity of novel 1-(5-methyl-3-phenylisoxazolin-5-yl)methioxy-2-chloro-4-fluorobenzene derivatives as protox inhibitors using holographic quantitatives structure-activity relationship (HQSAR) methodology, J. Kor. Soc. Appl. Biol. Chem. 47(3), 351- 356
9 Sung, N. D., Ock, H. S., Chung, H. J. and Song, J. H. (2003) Quantitative structu- re-activity relationships and molecular shape similarity of the herbicidal N-substituted phenyl-3,4-dimethylmaleimide derivatives, Kor. J. Pest. Sci. 7(2), 100-107
10 Waller, C. L. and Marshall, G. R. (1993) Three-dimensional quantitative structure- activity relationship of angiotesin converting enzyme and thermolysin inhibitors. 11. Acomparasion of CoMFA models incorporating molecular orbital fields and desolvation free energies based on active-analog and complementary-receptor-field alignment rules. J. Med. Chem. 36, 2390-2403   DOI   ScienceOn
11 Cramer, R. D. lll., Bunce, J. D. and Patterson, D. E. (1988) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional JAR studies. Quant. Struct. Act. Relat. 7, 18-25   DOI
12 Klebe, G. and Abraham, U. (1999) Comparative molecular similarity indices analyisis (CoMSIA) to study hydrogenbonding properties and to score combinatorial libraries. J. Comput. Aid. Mol. Des. 13, 1-10   DOI   ScienceOn
13 Stahle, L. and Wold, S. (1988) Multivariate data analysis and experimental design in biomedical research. Progr. Med. Chem. 25, 292-334
14 Boger, P and Wakabayashi, K. (1999) Peroxidizing Herbicides, Springer-Verlag Berline Heidelberg. Germany
15 Sung, N. D., Ock, H. S., Chung, H. J,. Song, J. H. and Lee, Y. G. (2003) Comparatives molecular field analyses (CoMFA) on the growth inhibition activity of N-phenyl-3,4,5,6-tetrahydrophthalimide and N-phenyl-3,4-dimethylmaleimide derivatives. Kor. J. Pest. Sci. 7(2), 75-82
16 Lien, E. J., Guo, Z. R., Li, R. L. and Su, C. T. (1982) Use of dipole moment as parameter in drug receptor; Interaction and quantitative structure activity relationship studies. J. Pharm. 71, 641-655   DOI
17 Ryu, E. K., Jeon, D. J., Song, J. H. and Kim, H. R. (2001) Herbicidal 2-(5-isoxa-zolmylmethyloxyphenyl)-4,5,6,7-tetrahydro-2H-indazo1e derivatives. Korean Pat. 0289470
18 QCPE; Quantum Chemistry Program Exchange, Creative Arts Building 181, Indiana Univ., Bloomington, Indiana 47405, U.S.A
19 Stewart, J. J. (1990) MOPAC: A semiempirical molecular orbital program. J. Comp.-Aided Mol. Design. 4, 1-105   DOI
20 Kim, K. H. (1993) hi 3D QSAR Drug Design, Theory, Methos and Applications: Comparison of classical and 3D-QSAR. Kubinyi, H. (ed.), ESCOM. Leiden, pp. 619-642
21 Dewar, M. J. S., Zoebish, E. G., Healy, E. F. and Stewart, J. J. P. (1985) AMl: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902-3909   DOI
22 Marshall, G. R., Barry, C. D., Bosshard, H. E., Dammkoehler, R. A. and Dunn, D. A. (1979) In Computer-assisted drug design: The conformational parameter in drug design; active analog approach. Olsen, E. C. and Christoffersen, R. E. (eds.), Ammerican Chemical Society, Washington, D.C., pp. 205-226
23 Wold, S., Albano, C., Dunn, W. J., Edlund, U., Esbensen, K., Gelaae?, P., Hellberg, S., Johanasson, F., Lindberg, W. and Sjostrom, M. (1984) In Chemometrics: Mathematics and Statistics in Chemistry Multivariate Data Analysis in Chemistry, Kowalski, B. R. (ed.), Reidel, Dordrecht, Nethelands. pp. 12-94
24 Fujita, T. (2002) In Agrochemical Discovery, Insect, Weed, and Fungal control: Similarities in bioanalogous structural transformation patterns, Ch. 15, Baker, D. R. and Umetsu, N. K. (eds.), ACS Symposium Series No. 774, American Chemical Society, Washington, DC
25 Uraguchi, R., Sato, Y., Nakayama, A., Sukekawa, M., Iwataki, I., Boger, P. and Wakabayashi, K. (1997) Molecular shape similarity of cyclic imides and protoporphyrinogen IX. J. Pestic. Sci. 22, 314-320
26 Kerr, R. et al., (1994) Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics. Biophys. J. 67, 1501-1515   DOI   ScienceOn