• 제목/요약/키워드: selective phase transformation

검색결과 14건 처리시간 0.028초

Ti-6Al-4V 합금에서 상 변화를 고려한 Selective Laser Melting 프로세스 연구 (A Study on Selective Laser Melting Process Considering Phase Transformation for Ti-6Al-4V)

  • 송성일;박주헌;진병주;이경돈
    • 한국주조공학회지
    • /
    • 제39권6호
    • /
    • pp.110-115
    • /
    • 2019
  • Recently, various studies have been conducted on additive manufacturing technology developed using metal materials. In this study, a numerical analysis was introduced to analyze the effects of the thermal deformation and residual stress which arise during the SLM (selective laser melting) manufacturing process. A phase-transformation mechanism is implemented with the use of the Ti-6Al-4V material, in which a solid-state phase transformation (SSPT) can be induced during a numerical analysis. In this case, the phase of the Ti-6Al-4V material changes from a powder to a solid state and then to the Martensite phase in sequence during heating and cooling steps. The numerical analysis during the SLM process was verified by comparing the results of tensile tests with those from the numerical analysis based on the SSPT material properties.

Effect of Annealed Oxides on the Formation of Inhibition Layer During Hot-Dip Galvanizing of 590Mpa Trip Steel

  • Kim, Seong-Hwan;Huh, Joo-Youl;Lee, Suk-Kyu;Park, Rho-Bum;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • 제10권1호
    • /
    • pp.6-12
    • /
    • 2011
  • The selective surface oxidation of a transformation-induced-plasticity (TRIP) steel containing 1.6 wt.% Mn and 1.5 wt.% Si during annealing at $800^{\circ}C$ was investigated for its influence on the formation of an inhibition layer during hot-dip galvanizing. The selective oxidation of the alloying elements and the oxide morphology were significantly influenced by the annealing atmosphere. The pure $N_{2}$ atmosphere with a dew point $-40^{\circ}C$ promoted the selective oxidation of Mn as a crystalline $Mn_{2}SiO_{4}$ phase, whereas the $N_{2}$ + 10% $H_{2}$ atmosphere with the same dew point $-40^{\circ}C$ promoted the selective oxidation of Si as an amorphous Si-rich oxide phase. During hot-dip galvanizing, the $Mn_{2}SiO_{4}$ phase was reduced more readily by Al in the Zn bath than the Si-rich oxide phase. Consequently, the pure $N_{2}$ atmosphere resulted in a higher formation rate of $Fe_{2}Al_{5}$ particles at the Zn/steel interface and better galvanizability than the $N_{2}$ + 10% $H_{2}$ atmosphere.

질화규소의 기계적 성질 및 접촉 손상: I. ${\alpha}/{\beta}$ 상분율의 영향 (A Study on the Mechanical Properties and Contact Damage of Silicon Nitrides : 1. Effect of ${\alpha}/{\beta}$ Phase Fraction)

  • 이승건
    • 한국분말재료학회지
    • /
    • 제5권1호
    • /
    • pp.15-21
    • /
    • 1998
  • The effect of $\alpha$/$\beta$ phase on the mechanical properties and contact damage of silicon nitrides $Si_3N_4$) was investigated. Silicon nitride materials were prepared from two starting powders, at selective increasing hot-pressing temperatures to coarsen the microstructures: (i) from relatively coarse $\alpha$-phase powder, essentially equiaxed $\alpha$-$Si_3N_4$ grains, with limited, slow transformation to $\beta$-$Si_3N_4$ grain; (ii) from relatively fine $\alpha$-phase powder, a more rapid transformation to $\beta$-$Si_3N_4$, with attendant grain elongation. The resulting micro-structure thereby provided a spectrum of $\alpha$/$\beta$ phase ratios, grain sizes, and grain shapes. Fracture strength, hardness, and toughness were measured, and contact damage and strength degradation after indentation were investigated by Hertzian indentation using spherical indenter. A brittle to ductile transition in $Si_3N_4$ depended on $\alpha$/$\beta$ phase ratio as well as grain size. Silicon nitride with elongated $\beta$ grains showed a superior, contact damage resistance.

  • PDF

Fe-25Mn-1.5Al-0.5C강의 고온 산화 거동과 표면 결함 (High Temperature Oxidation Behavior and Surface Defect in Fe-25Mn-1.5Al-0.5C Steel)

  • 박신화;홍순택;김태웅;정인상
    • 열처리공학회지
    • /
    • 제13권3호
    • /
    • pp.158-162
    • /
    • 2000
  • The high temperature oxidation behavior and the surface defect in Fe-25Mn-1.5A1-0.5C steel was investigated by XRD (X-ray Diffractin) and electron microscopy. The intra- and inter-granular oxides were formed by the selective oxidation of manganese and aluminum, which were identified to MnAl2O4 phase. Aluminum nitride (AlN) was formed in front of these oxides. The ${\gamma}$-matrix was transformed to ${\alpha}$- and ${\varepsilon}$- phases by the selective oxidation of manganese. The surface defect, micro-scab was induced by the difference of the high temperature ductility between the matrix and the inter-granular oxide.

  • PDF

Corrosion behavior and mechanism of CLAM and 316L steels in flowing Pb-17Li alloy under magnetic field

  • Xiao, Zunqi;Liu, Jing;Jiang, Zhizhong;Luo, Lin;Huang, Qunying
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.1962-1971
    • /
    • 2022
  • The liquid lead-lithium (Pb-17Li) blanket has many applications in fusion reactors due to its good tritium breeding performance, high heat transfer efficiency and safety. The compatibility of liquid Pb-17Li alloy with the structural material of blanket under magnetic field is one of the concerns. In this study, corrosion experiments China low activation martensitic (CLAM) steel and 316L steel were carried out in a forced convection Pb-17Li loop under 1.0 T magnetic field at 480 ℃ for 1000 h. The corrosion results on 316L steel showed the characteristic with a superficial porous layer resulted from selective leaching of high-soluble alloy elements and subsequent phase transformation from austenitic matrix to ferritic phase. Then the porous layers were eroded by high-velocity jet fluid. The main corrosion mechanism of CLAM steel was selective dissolution-base corrosion attack on the microstructure boundary regions and exclusively on high residual stress areas. CLAM steel performed a better corrosion resistance than that of 316L steel. The high Ni dissolution rate and the erosion of corroded layers are the main causes for the severe corrosion of 316L steel.

선택적 레이저 용융 공정의 공정변수 평가를 위한 용융풀 유한요소 모델 (A Finite Element Model of Melt Pool for the Evaluation of Selective Laser Melting Process Parameters)

  • 이강현;윤군진
    • 한국군사과학기술학회지
    • /
    • 제23권3호
    • /
    • pp.195-203
    • /
    • 2020
  • Selective laser melting(SLM) is one of the powder bed fusion(PBF) processes, which enables quicker production of nearly fully dense metal parts with a complex geometry at a moderate cost. However, the process still lacks knowledge and the experimental evaluation of possible process parameter sets is costly. Thus, this study presents a finite element analysis model of the SLM process to predict the melt pool characteristics. The physical phenomena including the phase transformation and the degree of consolidation are considered in the model with the effective method to model the volume shrinkage and the evaporated material removal. The proposed model is used to predict the melt pool dimensions and validated with the experimental results from single track scanning process of Ti-6Al-4V. The analysis result agrees with the measured data with a reasonable accuracy and the result is then used to evaluated each of the process parameter set.

마이크로웨이브 가열에 의한 황비철석의 선택적 상변환과 티오시안산염 용액에 의한 Au 회수율 향상 (Selective Phase Transformation of Arsenopyrite by Microwave Heating and their Enhancement Au Recovery by Thiocyanate Solution)

  • 한오형;김봉주;조강희;최낙철;박천영
    • 한국광물학회지
    • /
    • 제27권2호
    • /
    • pp.73-83
    • /
    • 2014
  • 마이크로웨이브 가열에 의하여 선택적으로 상변환을 일으키는 Au를 함유하는 황화광물을 조사하기 위하여 현미경과 SEM-EDS 분석을 수행하였으며 그리고 이에 따른 최대 Au 용출인자를 결정하기 위하여 티오시안산염 용출실험을 수행하였다. 비-가시성 Au를 함유하는 황화광물을 마이크로웨이브에 노출시킨 결과, 노출시간이 증가할수록 온도와 무게감소가 증가하였다. 이 황화광물 중 마이크로웨이브 가열에 가장 빠르게 선택적으로 상변환 된 광물은 황비철석이었다. 황비철석이 적철석으로 상변환되었으며, 상변환은 동심원적과 가장자리구조로 형성되었다. 또한 상변환 된 부분에서 O와 C가 검출되었으며, 일정하게 Fe 함량은 높게 그리고 As 함량은 낮게 나타났다. 이와 같은 결과는 마이크로웨이브 가열에 의한 arcing과 산화작용이 일어났기 때문이다. 마이크로웨이브에 35분 노출시킨 시료를 티오시안산염 용출실험에 적용하여 Au가 최대로 용출되는 조건은 0.5 g의 티오시안산나트륨 농도, 2.0 M의 염산 농도, 0.3 M의 황산구리 농도 그리고 용출온도$60^{\circ}C$에서였다. 최대 Au 용출 조건을 마이크로웨이브 처리 시료에 적용했을 때 Au 용출률이 59%에서 96.96%로 나타났지만 마이크로웨이브에 처리하지 않은 시료에서는 겨우 24.53%에서 92%로 나타났다.

Transformation of an Alkalin Protease Overproducer, Vibrio metschnikovii Strain RH530, and Improvement of Plasmid Stability by the par Locus

  • Chung, So-Sun;Shin, Yong-Uk;Kim, Hee-Jin;JIn, Chee-Hong;Lee, Hyune-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권2호
    • /
    • pp.222-228
    • /
    • 2001
  • Vibrio metschnikovii strain RH530 is a non-pathogenic, industrially-important alkaline protease producer which has been isolated from wastewater. In this paper, we report on the transformation of this strain by using the method of electroporation. A field strength of $7.5\;kVcm^{-1}$ and $25\;{\mu}F$, and using a 0.2-cm cuvette, appeared to be the optimal conditions for electroporation of the cells with the recombinant pSBCm plasmid carrying the vapK alkaline protease gene and the ColE1 replicon. Cells were subjected to osmotic shock in order to remove extracelluar DNase, and adding 200 mM of sucrose to electroporation buffer cells showed an increased transformation efficiency. Maximum efficiency of transformation was obtained at an early exponential growth phase. Using all of the conditions mentioned above, we routinely obtained a transformation efficiency of more than $10^4{({\mu}g\;plasmid\;DNA)}^{-1}$. The stability of the plasmid pSBCm in V. metschnikovii RH530 was 25% after 18h of growth (27 generations) in the medium without antibiotic selection. The insertion of the par locus to the pSBCm increased the stability of the plasmid up to 42% without selective pressure. The increase in plasmid stability was accompanied by the increase in the productivity of alkaline protease in the recombinant V. metschnikovii strain RH530. Determining optimal conditions for the transformation of the industrially-important, nonpathogenic Vibrio strain, and the improvement of plasmid stability by introducing the par locus into the high copy number plasmid vector, will allow the development of procedures involved in the genetic manipulation of this strain, particularly for its use in the production of industrial enzymes such as alkaline protease.

  • PDF

선택적 레이저 용융 방법으로 제작한 치과용 코발트 크롬 합금에 대한 문헌고찰 (Dental Co-Cr alloys fabricated by selective laser melting: A review article)

  • 강현구
    • 대한치과보철학회지
    • /
    • 제59권2호
    • /
    • pp.248-260
    • /
    • 2021
  • 코발트-크롬 합금은 다양한 치과보철물 제작에 이용되고 있고, 다른 합금에 비해 저렴한 가격과 우수한 기계적 특성이 장점이다. 최근, 기존 제작 방식의 단점을 극복하기 위해 적층제조 방식인 선택적 레이저 용융 방법이 보철물 제작에 이용되고 있다. 선택적 레이저 용융 방법의 공정 중 급속 가열과 냉각 과정은 제작된 합금의 미세구조와 결정립을 미세화하고, 기포를 감소시켜 기존 제작 방식에 의한 합금에 비해 기계적 특성을 향상시킨다. 반면, 적층과 급속 가열 및 냉각은 다량의 잔류응력 축적을 초래하는데, 추후 기계적 특성에 악영향을 미칠 수 있다. 따라서, 잔류응력을 제거하기 위해 주로 열처리를 시행하고, 회복과 재결정화에 의한 잔류응력의 감소뿐만 아니라 상변태, 석출물 및 미세구조의 균질화가 동반되어 기계적 특성의 복잡한 변화가 나타난다. 본 문헌고찰에서 코발트-크롬 합금의 제작 방식 비교 및 선택적 레이저 용융 방법으로 제작된 합금의 특징에 대해 알아보고자 한다.

Influence of Selective Oxidation Phenomena in CGLs on Galvanized Coating Defects Formation

  • Gong, Y.F.;Birosca, S.;Kim, Han S.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.1-5
    • /
    • 2008
  • The gas atmosphere in continuous annealing and galvanizing lines alters both composition and microstructure of the surface and sub-surface of sheet steel. The formation and morphology of the oxides of alloying elements in High Strength Interstitial Free (HS-IF), Dual Phase (DP) and Transformation-Induced Plasticity (TRIP) steels are strongly influenced by the furnace dew point, and the presence of specific oxide may result in surface defects and bare areas on galvanized sheet products. The present contribution reviews the progress made recently in understanding the selective formation of surface and subsurface oxides during annealing in hot dip galvanizing and conventional continuous annealing lines. It is believed that the surface and sub-surface composition and microstructure have a pronounced influence on galvanized sheet product surface quality. In the present study, it is shown that the understanding of the relevant phenomena requires a combination of precise laboratory-scale simulations of the relevant technological processes and the use of advanced surface analytical tools.