Browse > Article

Influence of Selective Oxidation Phenomena in CGLs on Galvanized Coating Defects Formation  

Gong, Y.F. (Materials Design Laboratory, Graduate Institute of Ferrous Technology Pohang University of Science and Technology)
Birosca, S. (Materials Design Laboratory, Graduate Institute of Ferrous Technology Pohang University of Science and Technology)
Kim, Han S. (Materials Design Laboratory, Graduate Institute of Ferrous Technology Pohang University of Science and Technology)
De Cooman, B.C. (Materials Design Laboratory, Graduate Institute of Ferrous Technology Pohang University of Science and Technology)
Publication Information
Corrosion Science and Technology / v.7, no.1, 2008 , pp. 1-5 More about this Journal
Abstract
The gas atmosphere in continuous annealing and galvanizing lines alters both composition and microstructure of the surface and sub-surface of sheet steel. The formation and morphology of the oxides of alloying elements in High Strength Interstitial Free (HS-IF), Dual Phase (DP) and Transformation-Induced Plasticity (TRIP) steels are strongly influenced by the furnace dew point, and the presence of specific oxide may result in surface defects and bare areas on galvanized sheet products. The present contribution reviews the progress made recently in understanding the selective formation of surface and subsurface oxides during annealing in hot dip galvanizing and conventional continuous annealing lines. It is believed that the surface and sub-surface composition and microstructure have a pronounced influence on galvanized sheet product surface quality. In the present study, it is shown that the understanding of the relevant phenomena requires a combination of precise laboratory-scale simulations of the relevant technological processes and the use of advanced surface analytical tools.
Keywords
galvanizing; galvannealing; TRIP; HS IF; oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Information on http://www.worldautosteel.com
2 J. M. Mataigne, M. Lamberigts and V. Leroy, Developments in the Annealing of Sheet Steels, p. 511, the Minerals, Metals and Materials Society (1992)
3 J. Takada, S. Yamamoto, M. Adachi, Z.Metallkde., 77, 6 (1996)
4 C. Martinez, R. Cremer and D. Loison, Surf. Interface Anal., 34, 524 (2002)   DOI   ScienceOn
5 H. J. Grabke, V. Leroy and H. Viefhaus, ISIJ International, 35, 95 (1995)   DOI
6 J. S. Kirdaly, Canadian Metallurgical Quarterly, 8, 35 (1969)   DOI
7 J. Mahieu, Ph.D. Thesis, Laboratory for Iron and Steelmaking, Ghent University, Ghent, Belgium (2004)
8 L. Bordignon, J. F. Willem and M. Lamberigts, Proceedings of the 4th International Conference on Zinc and Zinc Alloy Coated Steel Sheet (Galvatech '98), p. 260, Chiba (1998)
9 I. Olefjord, W. Leijon and U. Jelvestam, Application of Surface Science, 6, 241 (1980)   DOI   ScienceOn
10 D. P. Whittle, F. Gesmundo, and B. D. Bastow, Oxidaditon of Metals, 16, 159 (1981)   DOI
11 H. J. Grabke, Steel Research, 57, 178 (1986)   DOI
12 E. T. McDevitt, Y. Morimoto and M. Meshii, Proc. 39th Mechanical Working and Processing Conf., p. 215, Indianapolis, Indiana (1998)
13 X. J. Guan, J. J. Zhou and Z. C. Wang, Special Steel, 21, 27 (2000)
14 V. Lanteri, H. Gaye and F. Moliexe, Revue de Metallurgie-CIT, 9, 879 (1991)
15 C. E. Jordan and A.R. Marder, Proc. TMS Symp. p. 115, San Antonio, Texas (1998)
16 ULSAB-AVC Consortium. AHHS Guidelines Ver3, Information on http://www.ulsab.org
17 H. J. Grabke, ISIJ International, 29, 529 (1989)   DOI
18 I. Hertveldt, J. Craenen and B. C. De Cooman, Proc. TMS Symp. p. 13, San Antonio, Texas, US, February 16-19 (1998)
19 B.C. De Cooman, Trans. Indian Inst. Met., 59, 6 (2006)
20 J. L. Meijering, Advances in Materials Research, 5, 1 (1971)
21 D. Huin, V. Lanteri, D. Loison, P. Autesserre, H. Gaye, Proc. 3rd Int. Conf. on the Microscopy of Oxidation, p. 573, Cambridge (1996)
22 C. Wagner, Zeitschrift für Elektrochemie, 63, 772 (1959)
23 K. D. H. Bhadeshia and D. V. Edmonds, Metal Science, 17, 411 (1983)   DOI   ScienceOn