• Title/Summary/Keyword: selective leaching.

Search Result 63, Processing Time 0.024 seconds

Corrosion behavior and mechanism of CLAM and 316L steels in flowing Pb-17Li alloy under magnetic field

  • Xiao, Zunqi;Liu, Jing;Jiang, Zhizhong;Luo, Lin;Huang, Qunying
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1962-1971
    • /
    • 2022
  • The liquid lead-lithium (Pb-17Li) blanket has many applications in fusion reactors due to its good tritium breeding performance, high heat transfer efficiency and safety. The compatibility of liquid Pb-17Li alloy with the structural material of blanket under magnetic field is one of the concerns. In this study, corrosion experiments China low activation martensitic (CLAM) steel and 316L steel were carried out in a forced convection Pb-17Li loop under 1.0 T magnetic field at 480 ℃ for 1000 h. The corrosion results on 316L steel showed the characteristic with a superficial porous layer resulted from selective leaching of high-soluble alloy elements and subsequent phase transformation from austenitic matrix to ferritic phase. Then the porous layers were eroded by high-velocity jet fluid. The main corrosion mechanism of CLAM steel was selective dissolution-base corrosion attack on the microstructure boundary regions and exclusively on high residual stress areas. CLAM steel performed a better corrosion resistance than that of 316L steel. The high Ni dissolution rate and the erosion of corroded layers are the main causes for the severe corrosion of 316L steel.

The Characteristic of Selective Attachment and Bioleaching for Pyrite Using Indigenous Acidophilic Bacteria at $42^{\circ}C$ ($42^{\circ}C$에서 토착호산성박테리아의 황철석 표면에 대한 선택적 부착과 용출 특성)

  • Park, Cheon-Young;Kim, Soon-Oh;Kim, Bong-Ju
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.109-121
    • /
    • 2010
  • The bioleaching experiment under $42^{\circ}C$ was effectively carried out to leach the more valuable element ions from the pyrite in the Gangyang mine waste. Bacteria can survive at this temperature, as indigenous acidophilic bacteria were collected in the Hatchobaru acidic hot spring, in Japan. To enhance the bacterial activity, yeast extract was added to the pyrite-leaching medium. The indigenous acidophilic bacteria appeared to be rod-shaped in the growth-medium which contained elemental sulfur and yeast extract. The rod-shaped bacteria ($0.7\times2.6\;{\mu}m$, $0.6\times7\;{\mu}m$, $0.8\times5\;{\mu}m$ and $0.7\times8.4\;{\mu}m$) were attached to the pyrite surface. The colonies of the rod-shaped bacteria were selectively attached to the surroundings of a hexagonal cavity and the inner wall of the hexagonal cavity, which developed on a pyrite surface. Filament-shaped bacteria ranging from $4.92\;{\mu}m$ to $10.0\;{\mu}m$ in length were subsequently attached to the surrounding cracks and inner wall of the cracks on the pyrite surface. In the XRD analysis, the intensity of (111), (311), (222) and (320) plane on the bacteria pyrite sample relatively decreased in plane on the control pyrite sample, whereas the intensity of (200), (210) and (211) increased in these samples. The microbiological leaching content of Fe ions was found to be 3.4 times higher than that of the chemical leaching content. As for the Zn, microbiological leaching content, it was 2 times higher than the chemical leaching content. The results of XRD analysis for the bioleaching of pyrite indicated that the indigenous acidophilic bacteria are selectively attacked on the pyrite specific plane. It is expected that the more valuable element ions can be leached out from the mine waste, if the temperature is increased in future bioleaching experiments.

Electrodeposited Nano-flakes of Manganese Oxide on Macroporous Ni Electrode Exhibiting High Pseudocapacitance

  • Gobal, F.;Jafarzadeh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.178-184
    • /
    • 2012
  • A porous nickel (P-Ni) substrate was prepared by selective leaching of zinc from pressed pellets containing powders of Ni & Zn in 4 M NaOH solution. Anodic deposition of manganese oxide onto the porous Ni substrate ($MnO_x$/P-Ni) formed nano-flakes of manganese oxide layers as revealed in SEM studies. Pseudocapacitance of this oxide electrode was evaluated by cyclic voltammetry (CV) and chronopotentiometry (CHP) in 2 M NaOH solution. The specific capacitance of the Mn oxide electrode was as high as 1515 F $g^{-1}$, which was ten times higher than Mn oxide deposited on a flat Ni-ribbon. 80% of capacity was retained after 200 charge/discharge cycles. The system showed no loss of activity in dry form over period of days. The impedance studies indicated highly conducting $MnO_x$/P-Ni substance and the obtained specific capacitance from impedance data showed good agreement with the charge/discharge measurements.

Supergene Alteration of Amphibole in Suryun Kaolin Deposits: Mineralogical and morphological Studies (수륜 고령토광산에서 산출되는 각섬석의 표성 변질작용: 광물학적 및 형태적 연구)

  • 김수진;아비드무타자칸;이동진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.37-46
    • /
    • 1989
  • X-ray, optical and electron microscope studies exhibit that the amphiboles in anorthositic saprolite from kaolin deposits, located in Suryun-myeon, Seongju-gun, Kyungsangbuk-do, have altered under weathering conditions to smectite, mixed-layer mineral, vermiculite and goethite. In early supergene alteration stage when rock structure is still preserved, smectite occurs as initial weathering product of amphibole. Further weathering leads to the formation of mixed-layer mineral, vermiculite and goethite as indicated by XRD and SEM studies. Scanning electron microscopy studies of amphibole show that the dissolution of amphibole proceeds by selective etching at the surface along weaker zones producing distinct etch pattern, The calcic amphiboles according to electron microprobe analyses, show leaching of the most mobile elements (Mg, Ca and Fe) during alteration.

  • PDF

Fabrication of spiral scaffolds with nano-etched surface by using an innovative 3D printing method (혁신적인 3D 프린팅 방법을 사용하여 나노-에칭된 표면을 갖은 나선형 세포담체 제작)

  • Yang, Ji-Hun;Lee, Jae-Yun;Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.73-73
    • /
    • 2018
  • 조직재생공학은 조직이나 장기를 재생하고 유지하는 데 초점을 맞춘 종합 분야이다. 세포담체는 세포가 조직이나 장기로 발달 할 수 있도록 결정적인 역할을 한다. 따라서 공극률, 기공 크기, 기공 상호 연결성, 표면 거칠기, 기계적 강도 및 기하학과 같은 기본 요구 사항들은 중요한 특성으로 간주된다. Particle leaching, phase separation, solvent casting, gas foaming, selective laser sintering, fused deposition 및 3D dispensing (printing)과 같은 다양한 Rapid Prototyping 방법이 세포담체 제조에 사용되었다. 또한, 다양한 천연 및 합성 고분자가 세포담체를 제조하는데 사용되어왔다. 본 연구에서는 기존의 3D 프린팅 방법과 플라즈마 에칭 공정을 이용하여 나노 에칭 된 나선형 가닥으로 구성된 3 차원 세포담체를 제작 하였다. 제작 된 세포담체의 물리적 및 생물학적 성질을 비교 연구하기 위해, 본 연구에서는 매끄러운 가닥을 대조물로 사용하였다. 나노 에칭된 표면은 초기 세포 부착, 증식 및 골 형성 분화와 같은 세포 활동에 영향을 미쳤다.

  • PDF

A Study on Remediation of Heavy Metal Contaminated Soil using a Soil Electrolysis Apparatus with Spiral Paddle (나선형패들이 장착된 토양전기분해장치를 이용한 중금속 오염토양 정화에 관한 연구)

  • Lee, Jun-Hee;Choi, Young-Ik;Jung, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.797-802
    • /
    • 2017
  • This study aimed to remove organic matter and heavy metals that could affect the recycling of soils contaminated by heavy metals, by means of electrolysis, carried out simultaneously with the leaching of the soil. To ensure better experimental equipment, a soil electrolysis apparatus, equipped with spiral paddles, was used to agitate the heavy-metal-contaminated soil effectively. The heavy-metal-contaminated soil was electrolyzed by varying the voltage to 5 V(Condition 1), 15 V(Condition 2), and 20 V(Condition 3), under the optimal operating conditions of the electrolysis apparatus, as determined through previous studies. The results showed that the pH of the electrolyte solution and the heavy-metal-contaminated soil, after electrolysis, tended to decrease with an increase in voltage. The highest removal efficiencies of TOC and $COD_{Cr}$ were 18.8% and 29.1%, 38.8% and 4.2%, and 33.3% and 50.0%, under conditions 1, 2 and 3, respectively. Heavy metals such as Cd and As were not detected in this experiment. The removal efficiencies of Cu, Pb and Cr were 4.7%, 8.3% and 2.1%, respectively, under Condition 1, while they were 42.9%, 15.2% and 22.1%, respectively, under Condition 2, and 4.7%, 23.0%, and 24.9%, respectively, under Condition 3. These results suggest that varying the voltage with the soil electrolysis apparatus for removing contaminants for the recycling of heavy-metal-contaminated soil allows the selective removal of contaminants. Therefore, the results of this study can be valuable as basic data for future studies on soil remediation.

A Study on the Cementation Reaction of Cadmium by Zinc Powders from Leaching Solution of Waste Nickel-Cadmium Batteries (폐니켈-카드뮴 전지 침출액으로부터 아연 분말을 이용한 카드뮴의 치환반응에 대한 연구)

  • Kim, Min-Jun;Park, Il-Jeong;Kim, Dae-Weon;Jung, Hang-Chul
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.23-31
    • /
    • 2019
  • Cementation is one of economical and efficient recycling method precipitating the metal ion in solution by adding another active metal. In this study for optimizing cadmium recovery efficiency, it was performed as a function of the effect of pH, temperature, particle size, and input amount of zinc in 0.1 M $CdSO_4$ solution and Ni-Cd battery leaching solutions, respectively. The particle size of zinc and temperature were key factors for Cd cementation and it was confirmed that the input amount of 2.6 of Zn/Cd ratio using granular-type zinc was optimal condition for selective Cd recovery efficiency at $25^{\circ}C$.

Separation of Tungsten and Vanadium from Alkaline Solution with adding CaCl2 (알칼리 용액 중 CaCl2 첨가에 의한 텅스텐과 바나듐의 분리)

  • Moon, Gyeonghye;Choi, In-hyeok;Park, Kyungho;Kang, Hee-Nam;Kang, Jungshin;Lee, Jin-Young
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.42-49
    • /
    • 2017
  • As a fundamental study for the separation of vanadium and tungsten from the leaching solution obtained from the soda roasting and water leaching process of spent SCR (Selective Catalytic Reduction) catalyst was carried out. The precipitation behaviors of vanadium and tungsten using the artificial solution (V: $1g{\cdot}L^{-1}$, W: $10g{\cdot}L^{-1}$) was investigated depending on temperature, NaOH concentration and the amount of $CaCl_2$ (aq.) added. V (aq.) was selectively precipitated at lower temperature than 293 K while tungsten also was precipitated at higher temperature. Precipitation rate of V and W was decreased by the increasing concentration of NaOH. On the other hand, excess Ca addition induced the increase of precipitation rate for V and W due to the formation of $Ca(OH)_2$ following the pH decline. The response surface methodology was employed to optimize the selective precipitation. Vanadium of 99.5% and tungsten of 0.0% was precipitated at $0.5mol{\cdot}L^{-1}$ of aqueous NaOH and 1 equivalent ratio of $CaCl_2$ at 293 K.

Preparation and Characterization of Mesoporous ${\gamma}-Al_2O_3$ Prepared from Kaolinite (카올린나이트로부터 중기공성 ${\gamma}-Al_2O_3$의 제조 및 특성)

  • Lee, Gwang-Hyeon;Go, Hyeong-Sin;Kim, Yun-Seop
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.845-852
    • /
    • 2000
  • Mesoporous ${\gamma}-Al_2O_3$ has been prepared by selective leaching of silica from calcined domestic kaolinite. From XRD and TG-DTA data, it was found that the microstructure of a spinel phase, consisting of ${\gamma}-Al_2O_3$ containing a small mount of amorphous silica, was obtained by calcining kaolinite samples at around $1000^{\circ}C$ for 24h. Porous ${\gamma}-Al_2O_3$ was prepared by selectively dissolving the amorphous silica in KOH solutions of 1~4M at temperatures of $25~90^{\circ}C$ for leaching time of 0.5~4h. In the case of the ${\gamma}-Al_2O_3$ obtained upon KOH treatment of 4M at $90^{\circ}C$ for 1h, it showed a very narrow unimodal pore size distribution, and also formed much mesopore at a diameter of around $40~80{\AA}$. The specific surface area was $250\textrm{m}^2/g$ and the total pore volume was $0.654\textrm{cm}^3/g$.

  • PDF

Factors Affecting the Dissolution Behavior of Metals from Binary Alloys

  • Han, Kenneth N.
    • Resources Recycling
    • /
    • v.10 no.1
    • /
    • pp.49-55
    • /
    • 2001
  • The strategy of recovering metals from scrap is in general much different from primary sources. One of the main differences between the treatment of scrap and that of primary sources lies with the fact that metals are frequently associated with other met-als to form alloys in scrap, while metals occur in primary sources as oxides or sulfides. In this paper, factors affecting the dis-solution behavior of metals from various alloy systems have been reviewed and discussed. Specific examples have been drawn from Au/Ag, Au/cu and Ag/cu systems. Results of the dissolution behavior of various metals from these alloys have been reviewed and compared to the dissolution behavior of single metal systems in various lixiviants such as acids, cyanide and ammonia. It has been observed that the presence of other metals in alloys would significantly affect the dissolution rate of the metal in question. The leaching behavior of metals from homogeneous alloys relies on the chemical interaction between atoms in the lattice of the alloys, while that from heterogeneous alloys is affected by galvanic interaction established in the solution The manner in which the dissolution of a certain metal is influenced by surrounding metals has been discussed in terms of pas-sive and noble nature of the metal in relation to the neighboring metals. The role of the standard electrochemical Potential of these metals on the selective dissolution for a given lixiviant has also been discussed.

  • PDF