• Title/Summary/Keyword: selective emitter

Search Result 51, Processing Time 0.035 seconds

Research and Development Trend of Carrier Selective Energy Contact Solar Cells (전하선택형 태양전지의 연구개발 동향)

  • Cho, Eun-Chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.43-48
    • /
    • 2018
  • The traditional silicon heterojunction solar cells consist of intrinsic amorphous silicon to prevent recombination of the silicon surface and doped amorphous silicon to transport the photo-generated electrons and holes to the electrode. Back contact solar cells with silicon heterojunction exhibit very high open-circuit voltages, but the complexity of the process due to form the emitter and base at the backside must be addressed. In order to solve this problem, the structure, manufacturing method, and new materials enabling the carrier selective contact (CSC) solar cell capable of achieving high efficiency without using a complicated structure have recently been actively developed. CSC solar cells minimize carrier recombination on metal contacts and effectively transfer charge. The CSC structure allows very low levels of recombination current (eg, Jo < 9fA/cm2), thereby achieves high open-circuit voltage and high efficiency. This paper summarizes the core technology of CSC solar cell, which has been spotlighted as the next generation technology, and is aiming to speed up the research and development in this field.

TCAD Simulation을 이용한 LBC Solar Cell의 Local BSF Doping Profile 최적화에 관한 연구

  • An, Si-Hyeon;Park, Cheol-Min;Kim, Seon-Bo;Jang, Ju-Yeon;Park, Hyeong-Sik;Song, Gyu-Wan;Choe, U-Jin;Choe, Jae-U;Jang, Gyeong-Su;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.603-603
    • /
    • 2012
  • 최근에 전면 emitter의 doping profile이 다른 selective emitter solar cell은 실제 제작시단파장 영역에서 많은 gain을 얻을 수 없어 LBC 구조의 태양전지에 관한 연구가 많이 진행되고 있다. 본 연구는 TCAD simulation을 이용하여 후면에 형성되는 locally doped BSF(p++) region의 doping profile의 변화에 따른 태양전지 특성에 관한 연구이다. Al으로 형성되는 local back contact의 doping depth 및 surface concentration에 따른 전기적, 광학적 분석을 통해 주도적인 인자를 분석하고 최적화하였다. 특히 doping depth에 따른 변화보다는 surface concentration의 변화에 따른 특성변화가 주도적으로 나타났다.

  • PDF

Enhanced Electron Emission of Carbon Nanotube Arrays Grown Using the Resist-Protection-assisted Positioning Technique

  • Ryu, Je-Hwang;Kim, Ki-Seo;Yu, Yi-Yin;Lee, Chang-Seok;Lee, Yi-Sang;Jang, Jin;Park, Kyu-Chang
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.30-34
    • /
    • 2008
  • Field emitter arrays (FEAs) were developed using carbon nanotubes (CNTs) as electron emission sources. The CNTs were grown using a selective-positioning technique with a resist-protection layer. The light emission properties were studied through the electron emission of the CNTs on patterned islands, which were modulated with island diameter and spacing. The electron emission of CNT arrays with $5{\mu}m$ diameters and $10{\mu}m$ heights increased with increased spacing (from $10{\mu}m$ to $40{\mu}m$). The electron emission current of the $40-{\mu}m$-island-spacing sample showed a current density of 1.33 mA/$cm^2$ at E = 11 V/${\mu}m$, and a turn-on field of 7 V/${\mu}m$ at $1{\mu}A$ emission current. Uniform electron emission current and light emission were achieved with $40{\mu}m$ island spacing and $5{\mu}m$ island diameter.

Research of Heavily Selective Emitter Doping for Making Solar Cell by Using the New Atmospheric Plasma Jet (새로운 대기압 플라즈마 제트를 이용한 태양전지용 고농도 선택적 도핑에 관한 연구)

  • Cho, I Hyun;Yun, Myung Soo;Son, Chan Hee;Jo, Tae Hoon;Kim, Dong Hea;Seo, Il Won;Rho, Jun Hyoung;Jeon, Bu Il;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.238-244
    • /
    • 2013
  • Doping process using laser is an important process in fabrication of solar cell for heat treatment. However, the process of using the furnace is difficult to form a selective emitter doping region. The case of using a selective emitter laser doping is required an expensive laser equipment and induce the wafer's structure damage due to high temperature. This study, we fabricated a new costly plasma source. Through this, we research the selective emitter doping. We fabricated that the atmospheric pressure plasma jet injected Ar gas is inputted a low frequency (a few tens kHz). We used shallow doping wafers existing PSG (Phosphorus Silicate Glass) on the shallow doping CZ P-type wafer. Atmospheric plasma treatment time was 15 s and 30 s, and current for making the plasma is 40 mA and 70 mA. We investigated a doping profile by using SIMS (Secondary Ion Mass Spectroscopy) and we grasp the sheet resistance of electrical character by using doping profile. As result of experiment, prolonged doping process time and highly plasma current occur a deeper doping depth, moreover improve sheet resistance. We grasped the wafer's surface damage after atmospheric pressure plasma doping by using SEM (Scanning Electron Microscopy). We check that wafer's surface is not changed after plasma doping and atmospheric pressure doping width is broaden by increase of plasma treatment time and current.

A study of etch-back structure for high efficiency in crystalline silicon solar cells (결정질 태양전지의 고효율화를 위한 선택적 도핑 중 에치-백 구조에 관한 연구)

  • Jung, Woo-Won;Yang, Du-Hwan;Lee, Yong-U;Gong, Dae-Yeong;Kim, Seon-Yong;Yi, Jun-Sin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.347-347
    • /
    • 2009
  • 결정질 태양전지의 공정에 있어서 호모지니어스(homogeneous)한 구조보다 향상된 변환효율을 얻기 위해 선택적 도핑 방법에 관한 연구가 활발하다. 선택적 도핑 방법이란 에미터(emitter) 층을 $n^{++}$ 영역과 $n^+$ 영역으로 나누어 향상된 전류밀도와 개방전압을 얻기 위한 방법이다. 본 연구에서 제시된 RIE 에치-백 구조는 다수의 선택적 도핑 방법 중 하나이다. 기존의 에치-백 구조는 전면 전극 형성 후 RIE 공정을 수행하기 때문에 전면 전극이 손상되고 RIE 데미지(damage)가 발생되는 문제점이 있었다. 그러나 본 연구에서 제시된 구조는 기존의 에치-백 구조와 달리 RIE 에칭 후 발생된 데미지를 제거하는 추가적인 공정인 질산 패시베이션(nitric acid passivation)이 수행되었다. 또한 본 연구에서 새롭게 제시된 블라킹 마스크 페이스트(blocking mask paste)는 기존의 에치-백 구조에서 발생된 전극 손상 문제를 해결해 주고 있다. 이러한 결과로 호모지니어스 구조보다 향상된 전류밀도 (35.77 mA/$cm^2$), 개방전압 (625 mV), FF (78.01%), 변환효율 (17.43%)를 얻었다.

  • PDF

Electrode formation using Light induced electroless plating in the crystalline silicon solar cells

  • Jeong, Myeong-Sang;Gang, Min-Gu;Lee, Jeong-In;Kim, Dong-Hwan;Song, Hui-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.347.1-347.1
    • /
    • 2016
  • Screen printing is commonly used to form the electrode for crystalline silicon solar cells. However, it has caused high resistance and low aspect ratio, resulting in decrease of conversion efficiency. Accordingly, Ni/Cu/Ag plating method could be applied for crystalline silicon solar cells to reduce contact resistance. For Ni/Cu/Ag plating, laser ablation process is required to remove anti-reflection layers prior to the plating process, but laser ablation results in surface damage and then decrease of open-circuit voltage and cell efficiency. Another issue with plating process is ghost plating. Ghost plating occurred in the non-metallized region, resulting from pin-hole in anti-reflection layer. In this paper, we investigated the effect of Ni/Cu/Ag plating on the electrical properties, compared to screen printing method. In addition, phosphoric acid layer was spin-coated prior to laser ablation to minimize emitter damage by the laser. Phosphorous elements in phosphoric acid generated selective emitter throughout emitter layer during laser process. Then, KOH treatment was applied to remove surface damage by laser. At this step, amorphous silicon formed by laser ablation was recrystallized during firing process and remaining of amorphous silicon was removed by KOH treatment. As a result, electrical properties as Jsc, FF and efficiency were improved, but Voc was lower than screen printed solar cells because Voc was decreased due to surface damage by laser process. Accordingly, we expect that efficiency of solar cells could be improved by optimization of the process to remove surface damage.

  • PDF

Passivation Properties of Phosphorus doped Amorphous Silicon Layers for Tunnel Oxide Carrier Selective Contact Solar Cell (터널 산화막 전하선택형 태양전지를 위한 인 도핑된 비정질 실리콘 박막의 패시베이션 특성 연구)

  • Lee, Changhyun;Park, Hyunjung;Song, Hoyoung;Lee, Hyunju;Ohshita, Yoshio;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.125-129
    • /
    • 2019
  • Recently, carrier-selective contact solar cells have attracted much interests because of its high efficiency with low recombination current density. In this study, we investigated the effect of phosphorus doped amorphous silicon layer's characteristics on the passivation properties of tunnel oxide passivated carrier-selective contact solar cells. We fabricated symmetric structure sample with poly-Si/SiOx/c-Si by deposition of phosphorus doped amorphous silicon layer on the silicon oxide with subsequent annealing and hydrogenation process. We varied deposition temperature, deposition thickness, and annealing conditions, and blistering, lifetime and passivation quality was evaluated. The result showed that blistering can be controlled by deposition temperature, and passivation quality can be improved by controlling annealing conditions. Finally, we achieved blistering-free electron carrier-selective contact with 730mV of i-Voc, and cell-like structure consisted of front boron emitter and rear passivated contact showed 682mV i-Voc.

Study of Localized Surface Plasmon Polariton Effect on Radiative Decay Rate of InGaN/GaN Pyramid Structures

  • Gong, Su-Hyun;Ko, Young-Ho;Kim, Je-Hyung;Jin, Li-Hua;Kim, Joo-Sung;Kim, Taek;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, InGaN/GaN multi-quantum well grown on GaN pyramid structures have attracted much attention due to their hybrid characteristics of quantum well, quantum wire, and quantum dot. This gives us broad band emission which will be useful for phosphor-free white light emitting diode. On the other hand, by using quantum dot emission on top of the pyramid, site selective single photon source could be realized. However, these structures still have several limitations for the single photon source. For instance, the quantum efficiency of quantum dot emission should be improved further. As detection systems have limited numerical aperture, collection efficiency is also important issue. It has been known that micro-cavities can be utilized to modify the radiative decay rate and to control the radiation pattern of quantum dot. Researchers have also been interested in nano-cavities using localized surface plasmon. Although the plasmonic cavities have small quality factor due to high loss of metal, it could have small mode volume because plasmonic wavelength is much smaller than the wavelength in the dielectric cavities. In this work, we used localized surface plasmon to improve efficiency of InGaN qunatum dot as a single photon emitter. We could easily get the localized surface plasmon mode after deposit the metal thin film because lnGaN/GaN multi quantum well has the pyramidal geometry. With numerical simulation (i.e., Finite Difference Time Domain method), we observed highly enhanced decay rate and modified radiation pattern. To confirm these localized surface plasmon effect experimentally, we deposited metal thin films on InGaN/GaN pyramid structures using e-beam deposition. Then, photoluminescence and time-resolved photoluminescence were carried out to measure the improvement of radiative decay rate (Purcell factor). By carrying out cathodoluminescence (CL) experiments, spatial-resolved CL images could also be obtained. As we mentioned before, collection efficiency is also important issue to make an efficient single photon emitter. To confirm the radiation pattern of quantum dot, Fourier optics system was used to capture the angular property of emission. We believe that highly focused localized surface plasmon around site-selective InGaN quantum dot could be a feasible single photon emitter.

  • PDF

A Study on the Selective Hole Carrier Extraction Layer for Application of Amorphous/crystalline Silicon Heterojunction Solar Cell (이종접합 실리콘 태양전지 적용을 위한 선택적 전하접합 층으로의 전이금속산화물에 관한 연구)

  • Kim, Yongjun;Kim, Sunbo;Kim, Youngkuk;Cho, Young Hyun;Park, Chang-kyun;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.192-197
    • /
    • 2017
  • Hydrogenated Amorphous Silicon (a-Si:H) is used as an emitter layer in HIT (heterojunction with Intrinsic Thin layer) solar cells. Its low band gap and low optical properties (low transmittance and high absorption) cause parasitic absorption on the front side of a solar cell that significantly reduces the solar cell blue response. To overcome this, research on CSC (carrier Selective Contacts) is being actively carried out to reduce carrier recombination and improve carrier transportation as a means to approach the theoretical efficiency of silicon solar cells. Among CSC materials, molybdenum oxide ($MoO_x$) is most commonly used for the hole transport layer (HTL) of a solar cell due to its high work function and wide band gap. This paper analyzes the electrical and optical properties of $MoO_x$ thin films for use in the HTL of HIT solar cells. The optical properties of $MoO_x$ show better performance than a-Si:H and ${\mu}c-SiO_x:H$.

결정질 실리콘 태양전지의 고효율화 공정 및 ALD 기술

  • Jang, Hyo-Sik;Jo, Yeong-Jun;Sin, Ung-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.87-87
    • /
    • 2012
  • 결정질 실리콘 태양전지의 효율을 향상시키기 위하여, 현재 가장 대표적으로 selective emitter가 적용되고 있다. 또한, 효율 향상을 위해 도금, 잉크젯 프린팅, 개선된 스크린 프린팅, 전사를 이용한 전극 형성 개선과 절연막을 이용한 surface passivation이 가장 활발하게 연구 되고 있다. 이외에도 연구되어지고 있는 반도체 기술의 이온주입, 플라즈마 도핑기술 등이 있다. 효율 향상과 관련된 기술들을 논할 것이며, 특히 원자층증착법(ALD)을 이용하여 surface passivation의 특성 향상과 양산 기술 적용 그에 따른 전극 형성 구조에 대하여 발표하고자 한다. ALD기술은 표면반응증착이기 때문에 실리콘 세정법에 따라 패시베이션 특성이 달라지게 된다. 세정법과 열처리에 따른 Al2O3박막의 물성변화, 계면의 반응에 따라서 전하 수명 값이 크게 좌우되는 것을 제시할 것이다.

  • PDF