Enhanced Electron Emission of Carbon Nanotube Arrays Grown Using the Resist-Protection-assisted Positioning Technique

  • Ryu, Je-Hwang (Department of Information Display and Advanced Display Research Center, Kyung Hee University) ;
  • Kim, Ki-Seo (Department of Physics and Advanced Display Research Center, Kyung Hee University) ;
  • Yu, Yi-Yin (Department of Information Display and Advanced Display Research Center, Kyung Hee University) ;
  • Lee, Chang-Seok (Department of Information Display and Advanced Display Research Center, Kyung Hee University) ;
  • Lee, Yi-Sang (Department of Information Display and Advanced Display Research Center, Kyung Hee University) ;
  • Jang, Jin (Department of Information Display and Advanced Display Research Center, Kyung Hee University) ;
  • Park, Kyu-Chang (Department of Information Display and Advanced Display Research Center, Kyung Hee University)
  • Published : 2008.12.30

Abstract

Field emitter arrays (FEAs) were developed using carbon nanotubes (CNTs) as electron emission sources. The CNTs were grown using a selective-positioning technique with a resist-protection layer. The light emission properties were studied through the electron emission of the CNTs on patterned islands, which were modulated with island diameter and spacing. The electron emission of CNT arrays with $5{\mu}m$ diameters and $10{\mu}m$ heights increased with increased spacing (from $10{\mu}m$ to $40{\mu}m$). The electron emission current of the $40-{\mu}m$-island-spacing sample showed a current density of 1.33 mA/$cm^2$ at E = 11 V/${\mu}m$, and a turn-on field of 7 V/${\mu}m$ at $1{\mu}A$ emission current. Uniform electron emission current and light emission were achieved with $40{\mu}m$ island spacing and $5{\mu}m$ island diameter.

Keywords

References

  1. Y. M. Wong, S. Wei, W. P. Kang, J. L. Davidson, W. Hofmeister, J. H. Huang, Y. Cui, Diam. and Relat. Mater. 13, 2105 (2004) https://doi.org/10.1016/j.diamond.2004.06.018
  2. Y. Saito, K. Hamaguchi, R. Mizushima, S. Uemura, T. Nagasako, J. Yotani, T. Shimojo, Appl.Surf. Sci. 146, 305 (1999) https://doi.org/10.1016/S0169-4332(99)00059-8
  3. K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, Appl. Phys. Lett. 79, 1534 (2001) https://doi.org/10.1063/1.1400085
  4. J. B. Cui, J. Robertson, W. I. Milne, J. Appl. Phys. 89, 3490 (2001) https://doi.org/10.1063/1.1350626
  5. V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, E. Voelkl, Appl. Phys. Lett. 76, 3555 (2000) https://doi.org/10.1063/1.126705
  6. Y. M. Wong, W. P. Kang, J. L. Davidson, B. K. Choi, W. Hofmeister, J. H. Huang, Diam. and Relat. Mater. 14, 2078 (2005) https://doi.org/10.1016/j.diamond.2005.09.024
  7. S. Huang, A. W. H. Mau, T. W. Turney, P. A. White, L. Dai, J. Phys. Chem. B 104, 2193 (2000) https://doi.org/10.1021/jp994152w
  8. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. Dai, Science 283, 512 (1999) https://doi.org/10.1126/science.283.5401.512
  9. S. H. Lim, Y. H. Yoon, J. H. Moon, K. C. Park, J. Jang, Appl. Phys. Lett. 87, 243106 (2005) https://doi.org/10.1063/1.2142079
  10. S. H. Lim, H. S. Yoon, J. H. Moon, K. C. Park, and J. Jang, , Appl. Phys. Lett.88, 033114 (2006) https://doi.org/10.1063/1.2166690
  11. K.C. Park, S. H. Lim, J. H. Moon, H. S. Yoon, D. Pribat, Y. Bonnassieux, and J. Jang, J. Korean Phys. Soc. 45, S833 (2004)
  12. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard, and K. Kern, Appl. Phys. Lett, 76, 2071 (2000) https://doi.org/10.1063/1.126258
  13. W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, D. Pribat, P. Legagneux, G. Pirio, V. Thien Binh, and V. Semet, Curr. Appl. Phys. 2, 509 (2002) https://doi.org/10.1016/S1567-1739(02)00166-9