• Title/Summary/Keyword: seismic response reduction technology

Search Result 68, Processing Time 0.023 seconds

Optimization of base-isolated structure with negative stiffness tuned inerter damper targeting seismic response reduction

  • Jean Paul Irakoze;Shujin Li;Wuchuan Pu;Patrice Nyangi;Amedee Sibomana
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.399-415
    • /
    • 2023
  • In this study, we investigate the use of a negative stiffness tuned inerter damper system to improve the performance of a base-isolated structure. The negative stiffness tuned inerter damper system consists of a tuned inerter damper connected in parallel with a negative stiffness element. To find the optimal parameters for the base-isolated structure with negative stiffness tuned inerter damper system, we develop an optimization method based on performance criteria. The objective of the optimization is to minimize the superstructure acceleration response ratio, while ensuring that the base displacement response ratio remains below a specified target value. We evaluate the proposed method by conducting numerical analyses on an eight-story building. The structure is modeled using both a simplified 3-degree-of-freedom system and a more detailed story-by-story shear-beam model. Lastly, a comparative analysis using time history analysis is performed to compare the performance of the base-isolated structure with negative stiffness tuned inerter damper system with that of the base-isolated structure and base-isolated structure with tuned inerter damper systems. The results obtained from the comparative analysis show that the negative stiffness tuned inerter damper system outperforms the tuned inerter damper system in reducing the dynamic seismic response of the base-isolated structure. Overall, this study demonstrates that the negative stiffness tuned inerter damper system can effectively enhance the performance of base-isolated structures, providing improved seismic response reduction compared to other systems.

Experimental and analytical studies on stochastic seismic response control of structures with MR dampers

  • Mei, Zhen;Peng, Yongbo;Li, Jie
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.395-416
    • /
    • 2013
  • The magneto-rheological (MR) damper contributes to the new technology of structural vibration control. Its developments and applications have been paid significant attentions in earthquake engineering in recent years. Due to the shortages, however, inherent in deterministic control schemes where only several observed seismic accelerations are used as the trivial input and in classical stochastic optimal control theory with assumption of white noise process, the derived control policy cannot effectively accommodate the performance of randomly base-excited engineering structures. In this paper, the experimental and analytical studies on stochastic seismic response control of structures with specifically designed MR dampers are carried out. The random ground motion, as the base excitation posing upon the shaking table and the design load used for structural control system, is represented by the physically based stochastic ground motion model. Stochastic response analysis and reliability assessment of the tested structure are performed using the probability density evolution method and the theory of extreme value distribution. It is shown that the seismic response of the controlled structure with MR dampers gain a significant reduction compared with that of the uncontrolled structure, and the structural reliability is obviously strengthened as well.

A Time-Domain Method to Generate Artificial Time History from a Given Reference Response Spectrum

  • Shin, Gangsig;Song, Ohseop
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.831-839
    • /
    • 2016
  • Seismic qualification by test is widely used as a way to show the integrity and functionality of equipment that is related to the overall safety of nuclear power plants. Another means of seismic qualification is by direct integration analysis. Both approaches require a series of time histories as an input. However, in most cases, the possibility of using real earthquake data is limited. Thus, artificial time histories are widely used instead. In many cases, however, response spectra are given. Thus, most of the artificial time histories are generated from the given response spectra. Obtaining the response spectrum from a given time history is straightforward. However, the procedure for generating artificial time histories from a given response spectrum is difficult and complex to understand. Thus, this paper presents a simple time-domain method for generating a time history from a given response spectrum; the method was shown to satisfy conditions derived from nuclear regulatory guidance.

Numerical investigation on behaviour of cylindrical steel tanks during mining tremors and moderate earthquakes

  • Burkacki, Daniel;Wojcik, Michal;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.97-111
    • /
    • 2020
  • Cylindrical steel tanks are important components of industrial facilities. Their safety becomes a crucial issue since any failure may cause catastrophic consequences. The aim of the paper is to show the results of comprehensive FEM numerical investigation focused on the response of cylindrical steel tanks under mining tremors and moderate earthquakes. The effects of different levels of liquid filling, the influence of non-uniform seismic excitation as well as the aspects of diagnosis of structural damage have been investigated. The results of the modal analysis indicate that the level of liquid filling is really essential in the structural analysis leading to considerable changes in the shapes of vibration modes with a substantial reduction in the natural frequencies when the level of liquid increases. The results of seismic and paraseismic analysis indicate that the filling the tank with liquid leads to the substantial increase in the structural response underground motions. It has also been observed that the peak structural response values under mining tremors and moderate earthquakes can be comparable to each other. Moreover, the consideration of spatial effects related to seismic wave propagation leads to a considerable decrease in the structural response under non-uniform seismic excitation. Finally, the analysis of damage diagnosis in steel tanks shows that different types of damage may induce changes in the free vibration modes and values of natural frequencies.

Design and analysis of isolation effectiveness for three-dimensional base-seismic isolation of nuclear island building

  • Zhu, Xiuyun;Lin, Gao;Pan, Rong;Li, Jianbo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.374-385
    • /
    • 2022
  • In order to investigate the application of 3D base-seismic isolation system in nuclear power plants (NPPs), comprehensive analysis of constitution and design theory for 3-dimensional combined isolation bearing (3D-CIB) was presented and derived. Four different vertical stiffness of 3D-CIB was designed to isolate the nuclear island (NI) building. This paper aimed at investigating the isolation effectiveness of 3D-CIB through modal analysis and dynamic time-history analysis. Numerical results in terms of dynamic response of 3D-CIB, relative displacement response, acceleration and floor response spectra (FRS) of the superstructure were compared to validate the reliability of 3D-CIB in mitigating seismic response. The results showed that 3D-CIB can significantly attenuate the horizontal acceleration response, and a fair amount of the vertical acceleration response reduction of the upper structure was still observed. 3D-CIB plays a significant role in reducing the horizontal and vertical FRS, the vertical FRS basically do not vary with the floor height. The smaller the vertical stiffness of 3D-CIB is, the better the vertical isolation effectiveness is, whereas, it will increase the displacement and the rocking effect of superstructure. Although the advantage of 3D-CIB is that the vertical stiffness can be flexibly adjusted, it should be designed by properly accounting for the balance between the isolation effectiveness and displacement control including rocking effect. The results of this study can provide the technical basis and guidance for the application of 3D-CIB to engineering structure.

Seismic response of concrete columns with nanofiber reinforced polymer layer

  • Motezaker, Mohsen;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.361-368
    • /
    • 2017
  • Seismic response of the concrete column covered by nanofiber reinforced polymer (NFRP) layer is investigated. The concrete column is studied in this paper. The column is modeled using sinusoidal shear deformation beam theory (SSDT). Mori-Tanaka model is used for obtaining the effective material properties of the NFRP layer considering agglomeration effects. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized to obtain the dynamic response of the structure. The effects of different parameters such as NFRP layer, geometrical parameters of column, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure are shown. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure. In addition, using nanofibersas reinforcement leads a reduction in the maximum dynamic displacement of the structure.

Effect of sequential earthquakes on evaluation of non-linear response of 3D RC MRFs

  • Oggu, Praveen;Gopikrishna, K.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.279-293
    • /
    • 2021
  • Most of the existing seismic codes for RC buildings consider only a scenario earthquake for analysis, often characterized by the response spectrum at the specified location. However, any real earthquake event often involves occurrences of multiple earthquakes within a few hours or days, possessing similar or even higher energy than the first earthquake. This critically impairs the rehabilitation measures thereby resulting in the accumulation of structural damages for subsequent earthquakes after the first earthquake. Also, the existing seismic provisions account for the non-linear response of an RC building frame implicitly by specifying a constant response modification factor (R) in a linear elastic design. However, the 'R' specified does not address the changes in structural configurations of RC moment-resisting frames (RC MRFs) viz., building height, number of bays present, bay width, irregularities arising out of mass and stiffness changes, etc. resulting in changed dynamic characteristics of the structural system. Hence, there is an imperative need to assess the seismic performance under sequential earthquake ground motions, considering the adequacy of code-specified 'R' in the representation of dynamic characteristics of RC buildings. Therefore, the present research is focused on the evaluation of the non-linear response of medium-rise 3D RC MRFs with and without vertical irregularities under bi-directional sequential earthquake ground motions using non-linear dynamic analysis. It is evident from the results that collapse probability increases, and 'R' reduces significantly for various RC MRFs subjected to sequential earthquakes, pronouncing the vulnerability and inadequacy of estimation of design base shear by code-specified 'R' under sequential earthquakes.

Effect of relative stiffness on seismic response of subway station buried in layered soft soil foundation

  • Min-Zhe Xu;Zhen-Dong Cui;Li Yuan
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.167-181
    • /
    • 2024
  • The soil-structure relative stiffness is a key factor affecting the seismic response of underground structures. It is of great significance to study the soil-structure relative stiffness for the soil-structure interaction and the seismic disaster reduction of subway stations. In this paper, the dynamic shear modulus ratio and damping ratio of an inhomogeneous soft soil site under different buried depths which were obtained by a one-dimensional equivalent linearization site response analysis were used as the input parameters in a 2D finite element model. A visco-elasto-plastic constitutive model based on the Mohr-Coulomb shear failure criterion combined with stiffness degradation was used to describe the plastic behavior of soil. The damage plasticity model was used to simulate the plastic behavior of concrete. The horizontal and vertical relative stiffness ratios of soil and structure were defined to study the influence of relative stiffness on the seismic response of subway stations in inhomogeneous soft soil. It is found that the compression damage to the middle columns of a subway station with a higher relative stiffness ratio is more serious while the tensile damage is slighter under the same earthquake motion. The relative stiffness has a significant influence on ground surface deformation, ground acceleration, and station structure deformation. However, the effect of the relative stiffness on the deformation of the bottom slab of the subway station is small. The research results can provide a reference for seismic fortification of subway stations in the soft soil area.

Parametric study of SMA helical spring braces for the seismic resistance of a frame structure

  • Ding, Jincheng;Huang, Bin;Lv, Hongwang;Wan, Hongxia
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.311-322
    • /
    • 2020
  • This paper studies the influence of parameters of a novel SMA helical spring energy dissipation brace on the seismic resistance of a frame structure. The force-displacement relationship of the SMA springs is established mathematically based on a multilinear constitutive model of the SMA material. Four SMA helical springs are fabricated, and the force-displacement relationship curves of the SMA springs are obtained via tension tests. A numerical dynamic model of a two-floor frame with spring energy dissipation braces is constructed and evaluated via vibration table tests. Then, two spring parameters, namely, the ratio of the helical spring diameter to the wire diameter and the pre-stretch length, are selected to investigate their influences on the seismic responses of the frame structure. The simulation results demonstrate that the optimal ratio of the helical spring diameter to the wire diameter can be found to minimize the absolute acceleration and the relative displacement of the frame structure. Meanwhile, if the pre-stretch length is assigned a suitable value, excellent vibration reduction performance can be realized. Compared with the frame structure without braces, the frames with spring braces exhibit highly satisfactory seismic resistance performance under various earthquake waves. However, it is necessary to select an SMA spring with optimal parameters for realizing optimal vibration reduction performance.

Evaluation of Seismic Performance for Reinforced Concrete Piers Using Capacity Spectrum Method (역량스펙트럼 방법을 이용한 철근 콘크리트 교각의 내진성능 평가)

  • Song, Jong-Keol;Chang, Dong-Huy;Chung, Yeong-Hwa
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.185-194
    • /
    • 2004
  • To evaluate seismic performance of reinforced concrete piers two procedures for capacity spectrum method are presented. The capacity spectrum procedures include the reduction factor-ductility-period($R_{\mu}-{\mu}-T$)relationship in order to construct the inelastic demand spectra from the elastic demand spectra. Application of the procedures are illustrated by example analysis. Maximum displacements estimated by the procedures are compared to those by inelastic time history analysis for several artificial earthquakes. The results show that the maximum displacements estimated by the procedures are, on overall, smaller than those by the inelastic time history analysis.

  • PDF