Browse > Article
http://dx.doi.org/10.12989/sss.2020.25.3.311

Parametric study of SMA helical spring braces for the seismic resistance of a frame structure  

Ding, Jincheng (School of Civil Engineering and Architecture, Wuhan University of Technology)
Huang, Bin (School of Civil Engineering and Architecture, Wuhan University of Technology)
Lv, Hongwang (School of Civil Engineering and Architecture, Wuhan University of Technology)
Wan, Hongxia (School of Civil Engineering and Architecture, Wuhan University of Technology)
Publication Information
Smart Structures and Systems / v.25, no.3, 2020 , pp. 311-322 More about this Journal
Abstract
This paper studies the influence of parameters of a novel SMA helical spring energy dissipation brace on the seismic resistance of a frame structure. The force-displacement relationship of the SMA springs is established mathematically based on a multilinear constitutive model of the SMA material. Four SMA helical springs are fabricated, and the force-displacement relationship curves of the SMA springs are obtained via tension tests. A numerical dynamic model of a two-floor frame with spring energy dissipation braces is constructed and evaluated via vibration table tests. Then, two spring parameters, namely, the ratio of the helical spring diameter to the wire diameter and the pre-stretch length, are selected to investigate their influences on the seismic responses of the frame structure. The simulation results demonstrate that the optimal ratio of the helical spring diameter to the wire diameter can be found to minimize the absolute acceleration and the relative displacement of the frame structure. Meanwhile, if the pre-stretch length is assigned a suitable value, excellent vibration reduction performance can be realized. Compared with the frame structure without braces, the frames with spring braces exhibit highly satisfactory seismic resistance performance under various earthquake waves. However, it is necessary to select an SMA spring with optimal parameters for realizing optimal vibration reduction performance.
Keywords
dissipation brace; Shape memory alloy(SMA); frame structure; parametric study; vibration test; seismic response;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wang, S.J., Chiu, I.C. and Yu, C.H. (2019), "Experimental beyond design and residual performances of full-scale viscoelastic dampers and their empirical modeling", Earthq. Eng. Struct. Dyn., 48(10), 1093-1111. https://doi.org/10.1002/eqe.3170   DOI
2 Xu, M.B. and Song, G. (2004), "Adaptive control of vibration wave propagation in cylindrical shells using SMA wall joint", J. Sound Vib., 278(1-2), 307-326. https://doi.org/10.1016/j.jsv.2003.10.029   DOI
3 Yang, Q.S., Lu, X.Z. and Yu, C. (2017), "Experimental study and finite element analysis of energy dissipating outriggers", Adv. Struct. Eng., 20(8), 1196-1209. https://doi.org/10.1177/1369433216677122   DOI
4 Yoshida, O. and Dyke, S.J. (2004), "Seismic control of a nonlinear benchmark building using smart dampers", J. Eng. Mech., 130(4), 386-392. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(386)   DOI
5 Zapateiro, M., Karimi, H.R. and Luo, N. (2009), "Real-time hybrid testing of semiactive control strategies for vibration reduction in a structure with MR damper", Struct. Control Health, 17(4), 427-451. https://doi.org/10.1002/stc.321
6 Zhang, P., Song, G. and Li, H.N. (2012), "Seismic control of power transmission tower using pounding TMD", J. Eng. Mech. -ASCE, 139(10), 1395-1406. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000576   DOI
7 Zhou, H., Li, J. and Spencer Jr., B.F. (2019), "Multiscale random fields-based damage modeling and analysis of concrete structures", J. Eng. Mech., 145(7). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001618
8 Bae, J.S., Kwak, M.K. and Inman, D.J. (2005), "Vibration suppression of a cantilever beam using eddy current damper", J. Sound Vib., 284(3-5), 805-824. https://doi.org/10.1016/j.jsv.2004.07.031   DOI
9 Aguiar, R.A.A., Savi, M.A. and Pacheco, P.M.C.L. (2010), "Experimental and numerical investigations of shape memory alloy helical springs", Smart Mater. Struct., 19(2). https://doi.org/10.1088/0964-1726/19/2/025008
10 An, Y.H., Jo, H.K., Spencer Jr., B.F. and Ou, J.P. (2014), "A damage localization method based on the 'jerk energy'", Smart Mater. Struct., 23(2). https://doi.org/10.1088/0964-1726/23/2/025020
11 Boyd, J.G. and Lagoudas, D.C. (1996), "A thermodynamical constitutive model for shape memory materials: part I. The monolithic shape memory alloy", Int. J. Plasticity, 12(6), 805-842. https://doi.org/10.1016/S0749-6419(96)00030-7   DOI
12 Carreras, G., Casciati, F. and Casciati, S. (2010), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., Int. J., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
13 Casciati, F. and Faravelli, L. (2009), "A passive control device with SMA components: from the prototype to the model", Struct. Control Hlth., 16(7-8), 751-765. https://doi.org/10.1002/stc.328
14 Casciati, F. and van der Eijk, C. (2008), "Variability in mechanical properities and microstructure characterization of CuAlBe shape memory alloys for vibration mitigation", Smart Struct. Syst., Int. J., 4(2), 103-121. https://doi.org/103-121,10.12989/sss.2008.4.2.103   DOI
15 Gu, H. and Song, G.B. (2007), "Active vibration suppression of a flexible beam with piezoceramic patches using robust model reference control", Smart Mater. Struct., 16(4), 1453-1459. https://doi.org/10.1088/0964-1726/16/4/060   DOI
16 Casciati, F. and Wu, L.J. (2012), "Local positioning accuracy of laser sensors for structural health monitoring", Struct. Control Hlth., 20(5), 728-739. https://doi.org/10.1002/stc.1488   DOI
17 Casciati, S. Faravelli, L. and Vece, M. (2016), "Investigation on the fatigue performance of Ni-Ti thin wires", Struct. Control Health Monit., 24(1). https://doi.org/10.1002/stc.1855
18 De Domenico, D. and Ricciardi, G. (2018), "An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 47(5), 1169-1192. https://doi.org/10.1002/eqe.3011   DOI
19 Enemark, S., Santos, I.F. and Savi, M.A. (2016), "Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs", J. Intel. Mat. Syst. Struct., 27(20), 2721-2743. https://doi.org/10.1177/1045389X16635845   DOI
20 Friedman, A.J., Dyke, S.J. and Phillips, B.M. (2013), "Over-driven control for large-scale MR dampers", Smart Mater. Struct., 22(4). https://doi.org/10.1088/0964-1726/22/4/045001
21 Hashemi, Y.M., Kadkhodaei, M. and Mohammadzadeh, M.R. (2019), "Fatigue analysis of shape memory alloy helical springs", Int. J. Mech. Sci., 161. https://doi.org/10.1016/j.ijmecsci.2019.105059
22 Huang, B., Lv, H.W. and Song, Y. (2019), "Numerical simulation and experimental study of a simplified force-displacement relationship in superelastic SMA helical springs", Sensors, 19(1). https://doi.org/10.3390/s19010050   DOI
23 Hayashi, K., Skalomenos, K.A. and Inamasu, H. (2018), "Selfcentering rocking composite frame using double-skin concretefilled steel tube columns and energy-dissipating fuses in multiple locations", J. Stuct. Eng., 144(9). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002157
24 Huang, B., Zhang H.Y. and Wang, H. (2014), "Passive base isolation with superelastic Nitinol SMA helical springs", Smart Mater. Struct., 23(6). https://doi.org/10.1088/0964-1726/23/6/065009
25 Casciati, F., Faravelli, L. and Hamdaoui, K. (2007), "Performance of a base isolator with shape memory alloy bars", Earthq. Eng. Eng. Vib., 6(4), 401-408. https://doi.org/10.1007/s11803-007-0787-2   DOI
26 Huang, Z.W., Hua, X.G. and Chen, Z.Q. (2018a), "Modeling, testing, and validation of an eddy current damper for structural vibration control", J. Aerospace Eng., 31(5). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000891
27 Huang, B., Lao, Y.M. and Chen, J.M. (2018b), "Dynamic response analysis of a frame structure with superelastic nitinol SMA helical spring braces for vibration reduction", J. Aerosp. Eng., 31(6). https://doi.org/10.1061/(asce)as.1943-5525.0000923
28 Kim, J., Ryu, J. and Chung, L. (2006), "Seismic performance of structures connected by viscoelastic dampers", Eng. Struct., 28(2), 183-195. https://doi.org/10.1016/j.engstruct.2005.05.014   DOI
29 Mishra, S.K., Gur, S. and Chakraborty, S. (2013), "An improved tuned mass damper (SMA-TMD) assisted by a shape memory alloy spring", Smart Mater. Struct., 22(9). https://doi.org/10.1088/0964-1726/22/9/095016
30 Kundu, P., Nath, T. and Palani, I.A. (2018), "Integrating GLLWeibull distribution within a Bayesian framework for life prediction of shape memory alloy spring undergoing thermomechanical fatigue", J. Mater. Eng. Perform, 27(7). https://doi.org/10.1007/s11665-018-3435-2
31 Motahari, S.A. and Ghassemieh, M. (2007), "Multilinear onedimensional shape memory material model for use in structural engineering applications", Eng. Struct., 29(6), 904-913. https://doi.org/10.1016/j.engstruct.2006.06.007   DOI
32 Patil, D. and Song, G.B. (2016), "Shape memory alloy actuated accumulator for ultra-deepwater oil and gas exploration", Smart Mater. Struct., 25. https://doi.org/10.1088/0964-1726/25/4/045012
33 Qian, H., Li, H.N. and Song, G.B. (2016), "Experimental investigations of building structure with a superelastic shape memory alloy friction damper subject to seismic loads", Smart Mater. Struct., 25(12). https://doi.org/10.1088/0964-1726/25/12/125026
34 Song, G., Mo, Y.L. and Otero, K. (2006b), "Health monitoring and rehabilitation of a concrete structure using intelligent materials", Smart Mater. Struct., 15(2), 309-314. https://doi.org/10.1088/0964-1726/15/2/010   DOI
35 Ren, W.X., Li, H.N. and Song, G.B. (2007), "A one-dimensional strain-rate-dependent constitutive model for superelastic shape memory alloys", Smart Mater. Struct, 16(1), 191-197. https://doi.org/10.1088/0964-1726/16/1/023   DOI
36 Saadat, S., Salichs, J. and Noori, M. (2002), "An overview of vibration and seismic applications of NiTi shape memory alloy", Smart Mater. Struct., 11(2), 218-229. https://doi.org/0964-1726/11/2/305   DOI
37 Sedlak, P., Frost, M. and Kruisova, A. (2014), "Simulations of mechanical response of superelastic NiTi helical spring and its relation to fatigue resistance", J. Mater. Eng. Perform., 23(7), 2591-2598. https://doi.org/10.1007/s11665-014-0906-y   DOI
38 Song, G., Ma, N. and Penny, N. (2004), "Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators", Smart. Struct. Syst., Int. J., 7(1), 1-13. https://doi.org/10.1088/0964-1726/16/4/048
39 Song, G., Ma, N. and Li, H.N. (2006a), "Applications of shape memory alloys in civil structures", Eng. Struct., 28(9), 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010   DOI
40 Sun, W.Q. (2011), "Seismic response control of high arch dams including contraction joint using nonlinear super-elastic SMA damper", Constr. Build. Mater., 25(9), 3762-3767. https://doi.org/10.1016/j.conbuildmat.2011.04.013   DOI
41 Wang, W.X., Hua, X.G. and Wang, X.Y. (2018a), "Numerical modeling and experimental study on a novel pounding tuned mass damper", J. Vib. Control, 24(17). https://doi.org/10.1177/1077546317718714
42 Wang, W.X., Wang, X.Y. and Hua, X.G. (2018b), "Vibration control of vortex-induced vibrations of a bridge deck by a single-side pounding tuned mass damper", Eng. Struct., 173, 61-75. https://doi.org/10.1016/j.engstruct.2018.06.099   DOI