• Title/Summary/Keyword: seismic resistance

Search Result 463, Processing Time 0.026 seconds

Seismic response and retrofitting proposals of the St. Titus Chruch, Heraklion, Crete, Greece

  • Tzanakis, Michael J.;Papagiannopoulos, George A.;Hatzigeorgiou, George D.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1347-1367
    • /
    • 2016
  • The purpose of this work is to investigate the seismic behavior of St. Titus Church in Heraklion, Crete, Greece as well as the need of its seismic retrofitting. A numerical model of the Church is constructed using shell finite elements and it is then seismically examined using response spectrum and linear time-history analyses. Effects of soil-structure interaction have been also taken into account. The Church without retrofit is expected to exhibit extensive tensile failures and many compressive ones. Aiming to maintain the architectural character of the structure as well as to increase its seismic resistance, a retrofitting procedure involving injection of cement grout in conjunction with reinforced concrete jacketing to the internal side of the masonry walls is proposed. A numerical implementation of the proposed seismic retrofitting is performed and its effect is evaluated by response spectrum and linear time-history analyses. From the results of these analyses, it is shown that compressive failures are eliminated while only few tensile failures of local character take place.

Shaking Table Test and Analysis of Reinforced Concrete Frame with Steel Shear Wall with Circular Opening and Slit Damper

  • Shin, Hye-Min;Lee, Hee-Du;Shin, Kyung-Jae
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1420-1430
    • /
    • 2018
  • Earthquakes of 5.8 and 5.4 Richter scale recently occurred one after another in Korea, changing the Korean peninsula from an earthquake safe zone but 'earthquake danger zone'. Therefore, seismic reinforcements must expand to include structures with low seismic resistance in order to prepare for earthquakes on a larger scale in the future. This study investigated the performances of various seismic reinforcement systems such as X-braced steel rod reinforcement, steel shear wall with circular opening reinforcement, and slit damper reinforcement using shaking table test and computational analyses of seismic data in order to establish a proper seismic reinforcement plan. These three seismic reinforcement systems could increase the stiffness and strength of existing structures and reduce maximum drift ratio in the event of an earthquake.

Seismic Performance of Low-rise Piloti RC Buildings with Concentric Core (중심코어를 가지는 저층 철근콘크리트 필로티 건물의 내진성능)

  • Yoon, Tae-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.611-619
    • /
    • 2022
  • In this study, the seismic performance of low - rise piloti buildings with concentric core (shear wall) position is analysed and reviewed based on KDS 41. The prototype is selected among the constructed low - rise piloti buildings with concentric core designed based on KBC 2005 which was used for many low - rise piloti buildings construction. The seismic performance of the building shows plastic behavior in X-direction and elastic behavior in Y-direction. The inter-story drift is lager than that of concentric core case and is under the maximum allowed drift ratio. The displacement ratio of first story is much lager the that of upper stories, and the frame structure in the first story is evaluated as vulnerable to lateral force. Therefore, low - rise piloti buildings with concentric core need the diminishment of lateral displacement and reinforcement of lateral resistance capacity in seismic design and seismic retrofit.

Machine learning tool to assess the earthquake structural safety of systems designed for wind: In application of noise barriers

  • Ali, Tabish;Lee, Jehyeong;Kim, Robin Eunju
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.315-328
    • /
    • 2022
  • Structures designed for wind have an opposite design approach to those designed for earthquakes. These structures are usually reliable if they are constructed in an area where there is almost no or less severe earthquake. However, as seismic activity is unpredictable and it can occur anytime and anywhere, the seismic safety of structures designed for wind must be assessed. Moreover, the design approaches of wind and earthquake systems are opposite where wind design considers higher stiffness but earthquake designs demand a more flexible structure. For this reason, a novel Machine learning framework is proposed that is used to assess and classify the seismic safety of the structures designed for wind load. Moreover, suitable criteria is defined for the design of wind resistance structures considering seismic behavior. Furthermore, the structural behavior as a result of dynamic interaction between superstructure and substructure during seismic events is also studied. The proposed framework achieved an accuracy of more than 90% for classification and prediction as well, when applied to new structures and unknown ground motions.

Development and Practice of Performance-Based Seismic Design of High-Rise Buildings in China

  • Xiao Congzhen;Li Jianhui;Li Yinbin;Qiao Baojuan;Sun Chao;Wei Yue;Ding Jiannan
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.209-214
    • /
    • 2023
  • Seismic performance-based design methods are widely used in the field of engineering. This paper introduces the current status of seismic performance-based design methods for high-rise buildings in China, and summarizes latest advancements in seismic performance-based design methods for high-rise buildings in China, with a focus on the design methods based on predetermined yield mode and the design methods based on member ductility requirements. Finally, the development direction of seismic performance-based design method for high-rise buildings is prospected.

Seismic behavior of thin-walled CFST pier-to-base connections with tube confined RC encasement

  • Xuanding Wang;Yue Liao;Jiepeng Liu;Ligui Yang;Xuhong Zhou
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.217-235
    • /
    • 2024
  • Concrete-filled steel tubes (CFSTs) nowadays are widely used as the main parts of momentous structures, and its connection has gained increasing attention as the complexity in configuration and load transfer mechanism. This paper proposes a novel CFST pier-to-footing incorporating tube-confined RC encasement. Such an innovative approach offers several benefits, including expedited on-site assembly, effective confinement, and collision resistance and corrosion resistance. The seismic behavior of such CFST pier-to-footing connection was studied by testing eight specimens under quasi-static cyclic lateral load. In the experimental research, the influences on the seismic behavior and the order of plastic hinge formation were discussed in detail by changing the footing height, axial compression ratio, number and length of anchored bars, and type of confining tube. All the specimens showed sufficient ductility and energy dissipation, without significant strength degradation. There is no obvious failure in the confined footing, while local buckling can be found in the critical section of the pier. It suggests that the footing provides satisfactory strength protection for the connection.

A half-century of rocking isolation

  • Makris, Nicos
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1187-1221
    • /
    • 2014
  • The uplifting and rocking of slender, free-standing structures when subjected to ground shaking may limit appreciably the seismic moments and shears that develop at their base. This high-performance seismic behavior is inherent in the design of ancient temples with emblematic peristyles that consist of slender, free-standing columns which support freely heavy epistyles together with the even heavier frieze atop. While the ample seismic performance of rocking isolation has been documented with the through-the-centuries survival of several free-standing ancient temples; and careful post-earthquake observations in Japan during the 1940's suggested that the increasing size of slender free-standing tombstones enhances their seismic stability; it was George Housner who 50 years ago elucidated a size-frequency scale effect that explained the "counter intuitive" seismic stability of tall, slender rocking structures. Housner's 1963 seminal paper marks the beginning of a series of systematic studies on the dynamic response and stability of rocking structures which gradually led to the development of rocking isolation-an attractive practical alternative for the seismic protection of tall, slender structures. This paper builds upon selected contributions published during this last half-century in an effort to bring forward the major advances together with the unique advantages of rocking isolation. The paper concludes that the concept of rocking isolation by intentionally designing a hinging mechanism that its seismic resistance originates primarily from the mobilization of the rotational inertia of its members is a unique seismic protection strategy for large, slender structures not just at the limit-state but also at the operational state.

Seismic Performance Evaluation of School Building Short Column Effect (끼움벽과 단주효과를 고려한 학교건축물의 내진성능평가)

  • Ju, Chang-Gil;Han, Ju-Yeon;Park, Tae-Won
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.21 no.2
    • /
    • pp.33-39
    • /
    • 2014
  • In the case of low-rise buildings in seismic performance evaluation, lateral force resistance of the pillars affects the seismic performance of the building. Evaluation of the seismic performance of the column is determined by the holding performance is evaluated by comparing the shear strength and bending strength it was destroyed bylow intensity. In case of the school building, in order to install the large windows for ventilation and lighting of the partition walls are located between the pillars. The case of the pillars of these, shear failure occurs in the event of an earthquake is often, in the seismic performance evaluation, partition wall and the wall of the shim is evaluated ignoring, pillar of the general pillars If you have to calculate the results of the seismic performance distorted that are destroyed by bending behavior can be evaluated as often. Results of the study, when assessed by distinguishing the effective length of the column, it was found that when a seismic load is applied, it is possible to accurately predict the failure mode, reliable results of seismic performance evaluation of the school building.

Seismic Strengthening and Performance Evaluation of Damaged R/C Buildings Strengthened with Glass Fiber Sheet and Carbon Fiber X-Brace System (GFS-CFXB 내진보강법을 이용한 지진피해를 받은 R/C 건물의 내진성능 평가 및 내진보강 효과)

  • Lee, Kang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.667-674
    • /
    • 2013
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. This paper proposes a new seismic retrofit methodology combined with glass fiber sheet (GFS) and non-compression X-brace system using carbon fiber (CFXB) for reinforced concrete buildings damaged in earthquakes. The GFS is used to improve the ductility of columns damaged in earthquake. The CFXB consists of carbon fiber bracing and anchors, to replace the conventional steel bracing and bolt connection. This paper reports the seismic resistance of a reinforced concrete frame strengthened using the GFS-CFXB system. Cyclic loading tests were carried out, and the hysteresis of the lateral load-drift relations as well as ductility capacities were investigated. Carbon fiber is less rigid than the conventional materials used for seismic retrofitting, resulting in some significant advantages: the strength of the structure increased markedly with the use of CF X-bracing, and no buckling failure of the bracing was observed.

Seismic Safety Evaluation of Concrete Gravity Dams Considering Dynamic Fluid Pressure (동수압을 고려한 콘크리트 중력식 댐의 내진안전성 평가)

  • Kim, Yoog-Gon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.120-132
    • /
    • 2006
  • Seismic safety evaluation of concrete gravity dams is very important because failure of concrete gravity dam may incur huge loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about earthquake resistance or seismic safety of existing concrete gravity darns designed before current seismic design provisions were implemented. This research develops the dynamic fluid pressure calculation using 'added mass simulation'. The actual analysis using structural analysis package was performed. According to the analysis results, the vibration which is transverse to water flow seems to be very critical depending on the shape of the dam.