• Title/Summary/Keyword: seismic qualification

Search Result 78, Processing Time 0.024 seconds

Seismic Analysis of the Reflective Metal Insulation for Thermal Shielding of Main Equipments of Nuclear Power Plants (원전 설비 열차폐를 위한 반사형 금속단열재의 내진 해석)

  • Kim, Seung-Hyeon;Rhee, Huinam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.166-172
    • /
    • 2016
  • This paper deals with the seismic qualification of the reflective metal insulation for thermal shielding that is installed on the outer surfaces of the main equipment of the primary coolant system of a nuclear power plant. A small-scale model of the reactor pressure vessel, which has equivalent dynamic characteristics, was designed to be tested in domestic seismic testing facilities in the future. In this study, seismic analysis of the small-scale model installed with metal insulation was performed using equivalent static analysis and response spectrum analysis. The required Response Spectrum for main equipment of the primary coolant system of APR-1400 plant were considered to establish the enveloping response spectrum, which was applied to the seismic analysis model. The results from two seismic analysis methods were compared to show the structural adequacy of the metal insulator design against a safe shutdown earthquake. This study will form the basis for the seismic testing to support the seismic qualification of the reflective metal insulator.

Seismic Response Prediction of a Structure Using Experimental Modal Parameters from Impact Tests (충격시험에 의한 실험모드특성을 이용한 구조물의 지진응답 예측)

  • Cho, Sung-Gook;Joe, Yang-Hee;So, Gi-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.75-84
    • /
    • 2010
  • An in-cabinet response spectrum should be generated to perform the seismic qualification of devices and instruments mounted inside safety-related electrical equipment installed in nuclear power plants. The response spectrum is available by obtaining accurate seismic responses at the device mounting location of the cabinet. The dynamic behavior of most of electrical equipment may not be easily analyzed due to their complex mass and stiffness distributions. Considering these facts, this study proposes a procedure to estimate the seismic responses of a structure by a combination of a test and subsequent analysis. This technique firstly constructs the modal equations of the structure by using the experiment modal parameters obtained from the impact test. Then the seismic responses of the structure may be calculated by a mode superposition method. A simple steel frame structure was fabricated as a specimen for the validation of the proposed method. The seismic responses of the specimen were estimated by using the proposed technique and compared with the measurements obtained from the shaking table tests. The study results show that it is possible to accurately estimate the seismic response of the structure by using the experimental modal parameters obtained from the impact test.

Dynamic Shear Strength of Stirrup-reinforced Cast-in Anchors by Seismic Qualification Tests (스터럽 보강 선설치 앵커의 지진모의실험에 의한 동적 전단 저항강도 평가)

  • Kim, Tae Hyung;Park, Yong Myung;Kang, Choong Hyun;Lee, Jong Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.67-76
    • /
    • 2018
  • An experimental study was conducted to evaluate the breakout strength of stirrup-reinforced cast-in anchors under dynamic shear loadings. The shear loadings were applied in the manner specified in the ACI 355.2 and ETAG 001 for the seismic qualification tests. Test specimens were fabricated with M36 anchor (edge distance, 180mm) reinforced with D10 stirrups (spacing, 100mm). The specimens reached almost the breakout strength and thereafter fracture of anchor occurred. Additional tests with M42 anchor (edge distance, 160mm) reinforced with D6 bars (spacing, 100mm) were also conducted. The experimental results showed that the dynamic shear strength was not less than the static resistance. Based on the test results, it was shown that ACI 318 and ETAG 001 specifications estimate the breakout strength of stirrup-reinforced anchors conservatively as more reinforcement is provided.

Shear Strength of Hairpin Reinforced Cast-In-Place Anchors by Static and Seismic Qualification Tests (헤어핀 보강 선설치앵커의 정적 및 지진모의실험에 의한 전단 저항강도 평가)

  • Kim, Dong Hyun;Park, Yong Myung;Kim, Tae Hyung;Jo, Sung Hoon;Kang, Choong Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.333-345
    • /
    • 2015
  • This study evaluated the static and dynamic shear strength of cast-in-place anchors reinforced with hairpin bars in uncracked and cracked concrete. The anchors 30mm in diameter reinforced with D10 hairpin bar were designed with an edge distance of 150mm and an embedment depth of 240mm. The cracked specimens consisted of the orthogonal and parallel cracks to the direction of shear loads, respectively. The dynamic strength was evaluated using seismic qualification tests based on the ACI 355.2 standard. The shear strength of the hairpin reinforced anchor was hardly correlated to the concrete cracks and the dynamic strength was similar to its static shear strength. Finally, a consideration on the design strength of hairpin reinforced anchors was presented.

Verification of Seismic Safety of Nuclear power Plants (원자력발전소의 내진 안정성 확보)

  • 이종림
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.3-16
    • /
    • 2000
  • The ultimate safety-goal of nuclear power plants should be targeted at preventing release of nuclear radiation compared to general structures, Accordingly the phases of siting design construction and operation of NPPs are severely regulated by codes of aseismic design so as to assure safety of NPPs. To accomplish this goal strict quality assurace and seismic qualification tests should be conducted for all phases of NPP construction. In addition seismic monitoring systems should be installed and always in operation to provide proper post-earhquake procedures. Besides periodic safety review should be performed during operation along with the seismic margin assessment. In this paper general procedures to secure seismic safety of NPPs are systematically reviewed and additional considerations for improvement are suggested.

  • PDF