• Title/Summary/Keyword: seismic performance state

Search Result 277, Processing Time 0.024 seconds

Seismic performance and optimal design of framed underground structures with lead-rubber bearings

  • Chen, Zhi-Yi;Zhao, Hu;Lou, Meng-Lin
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.259-276
    • /
    • 2016
  • Lead-rubber bearings (LRBs) have been used worldwide in seismic design of buildings and bridges owing to their stable mechanical properties and good isolation effect. We have investigated the effectiveness of LRBs in framed underground structures on controlling structural seismic responses. Nonlinear dynamic time history analyses were carried out on the well-documented Daikai Station, which collapsed during the 1995 Hyogoken-Nanbu earthquake. Influences of strength ratio (ratio of yield strength of LRBs to yield strength of central column) and shear modulus of rubber on structural seismic responses were studied. As a displacement-based passive energy dissipation device, LRBs reduce dynamic internal forces of framed underground structures and improve their seismic performance. An optimal range of strength ratios was proposed for the case presented. Within this range, LRBs can dissipate maximum input earthquake energy. The maximum shear and moment of the central column can achieve more than 50% reduction, whereas the maximum shear displacement of LRBs is acceptable.

Seismic Performance and Vibration Control of Urban Over-track High-rise Buildings

  • Ying, Zhou;Rui, Wang;Zengde, Zhang
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.207-219
    • /
    • 2022
  • During the structural design of urban over-track high-rise buildings, two problems are most likely encountered: the abrupt change of story stiffness between the podium and the upper towers, as well as the demand for train-induced vibration control. Traditional earthquake-resistant structures have to be particularly designed with transfer stories to meet the requirement of seismic control under earthquakes, and thus horizontal seismic isolation techniques are recommended to solve the transfer problem. The function of mitigating the vertical subway-induced vibration can be integrated into the isolation system including thick rubber bearings and 3D composite vibration control devices. Engineering project cases are presented in this paper for a more comprehensive understanding of the engineering practice and research frontiers of urban over-track high-rise buildings in China.

Seismic resilience of structures research: A bibliometric analysis and state-of-the-art review

  • Tianhao Yu;Chao Zhang;Xiaonan Niu;Rongting Zhuang
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.369-383
    • /
    • 2023
  • Seismic resilience (SR) plays a vital role in evaluating and improving performance losses along with saving repair costs of structures from potential earthquakes. To further explore the developments, hotspots, and trend directions of SR, a total of 901 articles are obtained from the Web of Science (WoS) database. CiteSpace software is used to conduct a bibliometric analysis, which indicates an upward trend of publications in SR and explores the relationship of countries, journals, cited references, and keywords based on visual maps and detailed tables. Then, based on the results of the bibliometric analysis, a state-of-the-art review is conducted to further explore the current challenges and trend directions of SR. The trend directions can be divided into five categories: (a) SR assessments of infrastructure structures, (b) multi-hazard quantifications of SR, (c) seismic resilient structures, (d) refining and calibrating analytical models, and (e) multi-criteria decision-making frameworks for sustainability and SR.

Seismic retrofitting and fragility for damaged RC beam-column joints using UHP-HFRC

  • Trishna, Choudhury;Prem P., Bansal
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.463-472
    • /
    • 2022
  • Reinforced concrete (RC) beam column joints (BCJ) have mostly exhibited poor seismic performance during several past earthquakes, typically due to the poor-quality concrete or lack of reinforcement detailing typical of pre-code design practice. The present study is motivated towards numerical simulation and seismic fragility assessment of one such RC-BCJ. The BCJ is loaded to failure and strengthened using Ultra High Performance-Hybrid Fiber Reinforced Concrete (UHP-HFRC) jacketing. The strengthening is performed for four different BCJ specimens, each representing an intermediate damage state before collapse. viz., slight, moderate, severe, and collapse. From the numerical simulation of all the BCJ specimens, an attempt is made to correlate different modelling and design parameters of the BC joint with respect to the damage states. In addition, seismic fragility analysis of the original as well as the retrofitted damaged BCJ specimens show the relative enhancement achieved in each case.

Analytical Studies on Seismic Performance of Multi-Story Coupled Piping System in a Low-Rise Building

  • Jung, WooYoung;Ju, BuSeog
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.181-186
    • /
    • 2013
  • The construction costs for nonstructural systems such as mechanical/electrical equipment, ceiling system, and piping system occupy a significant proportion of the total cost. These nonstructural systems can also cause considerable economic losses and loss of life during and after an earthquake. Therefore, reduction of seismic risk of nonstructural components has been emerging as a key aspect of research in recent year. The primary objective of this study was to evaluate the seismic performance of a single-story and multi-story piping system installed in low-rise building and to identify the seismic vulnerability of the current piping systems. The seismic performance evaluation of the piping systems was conducted with 5 different earthquakes to account for the ground motion uncertainty and the preliminary results demonstrated that the maximum displacements of each floor in the multi-story piping system increased linearly with increasing floor level in the building system. This study revealed that the current design piping systems are significantly sensitive to the effect of floor height, which stress the necessity to improve the seismic performance of the current piping systems by, for example, strengthening with seismic sway bracing using transverse/longitudinal bracing cables or hangers.

Probabilistic seismic demand models and fragility estimates for reinforced concrete bridges with base isolation

  • Gardoni, Paolo;Trejo, David
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.527-555
    • /
    • 2013
  • This paper proposes probabilistic models for estimating the seismic demands on reinforced concrete (RC) bridges with base isolation. The models consider the shear and deformation demands on the bridge columns and the deformation demand on the isolation devices. An experimental design is used to generate a population of bridges based on the AASHTO LRFD Bridge Design Specifications (AASHTO 2007) and the Caltrans' Seismic Design Criteria (Caltrans 1999). Ground motion records are used for time history analysis of each bridge to develop probabilistic models that are practical and are able to account for the uncertainties and biases in the current, common deterministic model. As application of the developed probabilistic models, a simple method is provided to determine the fragility of bridges. This work facilitates the reliability-based design for this type of bridges and contributes to the transition from limit state design to performance-based design.

Procedure of Seismic Performance Evaluation of LNG Receiving Terminal Facilities (천연가스 생산기지 시설물의 내진성능평가 절차)

  • Lee, Tae-Hyung;Lee, Eunsuk;Park, Taekyu;Hong, Seong Kyeong;Kim, Joonho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.110-115
    • /
    • 2014
  • It is crucial for important facilities to withstand strong earthquakes because their damage may cause undesirable socio-economic effect. A liquefied natural gas (LNG) receiving terminal is one of the lifeline facilities whose seismic safety needs to be guaranteed. Even though all operating LNG receiving terminals in Korea were seismically designed, old design codes do not guarantee to comply with the current seismic design codes. In addition, if the constructional materials have been deteriorated, the seismic capacity of facilities may be also deteriorated. Therefore, it is necessary that the seismic performance of LNG receiving terminals is evaluated and the facilities that lack of seismic capacity have to be rehabilitated. In this paper, a procedure of seismic performance evaluation of such facilities is developed such that the procedure consists of three phases, namely pre-analysis, analysis, and evaluation phases. In the pre-analysis phase, design documents are reviewed and walk-on inspection is performed to determine the current state of the material properties. In the analysis phase, a structural analysis under a given earthquake or a seismic effect is performed to determine the seismic response of the structure. In the evaluation phase, seismic performance of the structure is evaluated based on limit states. Two of the important facilities, i.e. the submerged combustion vaporizer (SMV) and pipe racks of one of the Korean LNG receiving terminals are selected and evaluated according to the developed procedure. Both of the facilities are safe under the design level earthquake.

Shaking Table Model Test of Shanghai Tower

  • Lu, Xilin;Mao, Yuanjun;Lu, Wensheng;Kang, Liping
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.79-83
    • /
    • 2013
  • Shaking table test is an important and useful method to help structural engineers get better knowledge about the seismic performance of the buildings with complex structure, just like Shanghai tower. According to Chinese seismic design guidelines, buildings with a very complex and special structural system, or whose height is far beyond the limitation of interrelated codes, should be firstly studied through the experiment on seismic behavior. To investigate the structural response, the weak storey and crack pattern under earthquakes of different levels, and to help the designers improve the design scheme, the shaking table model tests of a scaled model of Shanghai tower were carried out at the State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China. This paper describes briefly the structural system, the design method and manufacture process of the scaled model, and the test results as well.

Statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load

  • Li, Gang
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.185-198
    • /
    • 2003
  • The concept of performance based seismic design has been gradually accepted by the earthquake engineering profession recently, in which the cost-effectiveness criterion is one of the most important principles and more attention is paid to the structural performance at the inelastic stage. Since there are many uncertainties in seismic design, reliability analysis is a major task in performance based seismic design. However, structural reliability analysis may be very costly and time consuming because the limit state function is usually a highly nonlinear implicit function with respect to the basic design variables, especially for the complex large-scale structures for dynamic and nonlinear analysis. Understanding statistical properties of the structural inelastic deformation, which is the aim of the present paper, is helpful to develop an efficient approximate approach of reliability analysis. The present paper studies the statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load. The randomness of earthquake load, dead load, live load, steel elastic modulus, yield strength and structural member dimensions are considered. Possible probability distributions for the maximum story are evaluated using K-S test. The results show that the choice of the probability distribution for the maximum elastoplastic story drift of steel frames is related to the mean value of the maximum elastoplastic story drift. When the mean drift is small (less than 0.3%), an extreme value type I distribution is the best choice. However, for large drifts (more than 0.35%), an extreme value type II distribution is best.

Probabilistic seismic evaluation of buckling restrained braced frames using DCFD and PSDA methods

  • Asgarian, Behrouz;Golsefidi, Edris Salehi;Shokrgozar, Hamed Rahman
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.105-123
    • /
    • 2016
  • In this paper, using the probabilistic methods, the seismic demand of buckling restrained braced frames subjected to earthquake was evaluated. In this regards, 4, 6, 8, 10, 12 and 14-storybuildings with different buckling restrained brace configuration (including diagonal, split X, chevron V and Inverted V bracings) were designed. Because of the inherent uncertainties in the earthquake records, incremental dynamical analysis was used to evaluate seismic performance of the structures. Using the results of incremental dynamical analysis, the "capacity of a structure in terms of first mode spectral acceleration", "fragility curve" and "mean annual frequency of exceeding a limit state" was determined. "Mean annual frequency of exceeding a limit state" has been estimated for immediate occupancy (IO) and collapse prevention (CP) limit states using both Probabilistic Seismic Demand Analysis (PSDA) and solution "based on displacement" in the Demand and Capacity Factor Design (DCFD) form. Based on analysis results, the inverted chevron (${\Lambda}$) buckling restrained braced frame has the largest capacity among the considered buckling restrained braces. Moreover, it has the best performance among the considered buckling restrained braces. Also, from fragility curves, it was observed that the fragility probability has increased with the height.