• Title/Summary/Keyword: seismic motions

Search Result 809, Processing Time 0.346 seconds

Advanced Analysis of Connections to Concrete-Filled Steel Tube Columns using the 2005 AISC Specification (AISC 2005 코드를 활용한 콘크리트 충전 합성기둥의 해석과 평가)

  • Park, Ji-Woong;Rhee, Doo-Jae;Chang, Suong-Su;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.9-21
    • /
    • 2012
  • Concrete filled steel tube (CFT) columns have been widely used in moment resisting frame structures both in seismic zones. This paper discusses the design of such members based on the advanced methods introduced in the 2005 AISC Specification and the 2005 Seismic Provisions. This study focuses particularly on design following both linear and nonlinear methods utilizing equivalent static and dynamic loads for low-rise moment frames. The paper begins with an examination of the significance of pseudo-elastic design interaction equations and the plastic ductility demand ratios due to combined axial compressive force and bending moment in CFT members. Based on advanced computational simulations for a series of five-story composite moment frames, this paper then investigates both building performance and new techniques to evaluate building damage during a strong earthquake. It is shown that 2D equivalent static analyses can provide good design approximations to the force distributions in moment frames subjected to large inelastic lateral loads. Dynamic analyses utilizing strong ground motions generally produce higher strength ratios than those from equivalent static analyses, but on more localized basis. In addition, ductility ratios obtained from the nonlinear dynamic analysis are sufficient to detect which CFT columns undergo significant deformations.

Strain-dependent dynamic properties of cemented Busan clay (부산 고결점토의 변형률 의존적 동적거동특성에 관한 연구)

  • Kim, Ah-Ram;Chang, Il-Han;Cho, Gye-Chun;Shim, Sung-Hyun;Kang, Yeoun-Ike
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.61-67
    • /
    • 2010
  • Thick soft clay deposits which are generally located at the west and south coast of the Korean peninsula have complicated characteristics according to their orientation and formation history. Thus, several geotechnical problems could possibly occur when those soft clay deposits are used as foundations for marine structures. Deep cement mixing (DCM) method is one of the most widely used soft soil improvement method for various marine structures, nowadays. DCM method injects binders such as cement into the soft ground directly and mixes with the in-situ soil to improve the strength and other geotechnical properties sufficiently. However, the natural impacts induced by dynamic motions such as ocean waves, wind, typhoon, and tusnami give significant influences on the stability of marine structures and their underlaying foundations. Thus, the dynamic properties become important design criteria to insure the seismic stability of marine structures. In this study, the dynamic behavior of cemented Busan clay is evaluated. Laboratory unconfined compression test and resonant column test are performed on natural in-situ soil and cement mixed specimens to confirm the strength and strain-dependent dynamic behavior variation induced by cement mixing treatment. Results show that the unconfined compressive strength and shear modulus increase with curing time and cement content increment. Finally, the optimized cement mixing ratio for sufficient dynamic stability is obtained through this study. The results of this study are expected to be widely used to improve the reliability of seismic design for marine structures.

  • PDF

Seismic Performance based Fragility Analysis of Bridge Structure in terms of Soil Conditions (지반조건을 고려한 교량의 내진성능기반 취약도 해석)

  • Lee, Dae-Hyoung;Hong, Hyung-Gi;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.73-76
    • /
    • 2008
  • The damage of earthquakes have to achieve by probabilistic evaluation because of uncertainty of earthquake. Fragility analysis is a useful tool for predicting the probability of damage induced by the probable earthquake. This paper presents the probability of damage as a function of peak ground acceleration and estimates the probability of five damage levels for the pier of prestressed concrete (PSC) bridge subjected to given ground acceleration. At each 100 artificial earthquake motions were generated in terms of soil conditions, and nonlinear time domain analyses were performed for the damage states of the pier of PSC bridge structures. These damage states are described by displacement ductility result from seismic performance based on existing research results. Using the damage states and ground motion parameters, five fragility curves for the pier of PSC bridges with five types of dominant frequencies were constructed assuming a log-nomal distribution. It was found that there was a significant effect on the fragility curves due to the dominant frequencies.

  • PDF

Attenuation Relations in HAZUS for Earthquake Loss Estimations in Korea (한반도 지진재해예측을 위한 HAZUS의 강진동 감쇠식 비교연구)

  • Kang, Su-Young;Suk, Bong-Chool;Yoo, Hai-Soo;Kim, Kwang-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.15-21
    • /
    • 2007
  • Strong motion attenuation relationship represents a comprehensive trend of ground shakings at sites with distances from the source, geology, local soil conditions, and others. It is necessary to develop an attenuation relationship with careful considerations of characteristics of the target area for reliable seismic hazard/risk assessments. In the study, observed ground motions from the January 2007 magnitude 4.9 Odaesan earthquake and the events occurring in the Gyeongsang provinces are compared with the previously proposed ground attenuation relationships in the Korean Peninsula to select most appropriate one. In the meantime, a few strong ground motion attenuation relationships are proposed and introduced in HAZUS, which have been designed for the Western United States and the Central and Eastern United States. The selected relationship from the ones for the Korean Peninsula has been compared with attenuation relationships available in HAZUS. Results of the study will increase the reliability of seismic hazard/risk assessments using HAZUS in the Korean Peninsula.

Dynamic Analysis for Base Isolated Structure with Shear Keys (쉬어키를 가진 면진건축물의 동적해석)

  • Han, Duck-Jeon;Kim, Tae-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.45-53
    • /
    • 2007
  • Recently, high-rise base isolated building structures with shear keys are often constructed in Japan which frequently occurs earthquakes. High-rise buildings are less damaged because those buildings have longer natural period than md or low rise buildings. The shear key is device that prevents the base isolators operating by the wind loads not by the earthquake loads. In case of big base shear force acts on the shear keys by earthquake, this device is broken and base isolator is operated. Therefore, seismic intensities play a role in acting on the shear keys. If wind loads are hither than the earthquake loads, the shear keys designed by wind loads are not operated in earthquakes. So, the requirements of shear keys in high-rise base isolated building structures must be examined in Korea with moderate seismic legions. In this study shear keys are applied with 5 and 15 stories base isolated building structures and investigated their dynamic responses to original and 1/2 scale downed El Centre NS(1940) ground motions. The results show that the yield shear forces of the shear keys affect significantly the dynamic behavior of base isolated building structures

  • PDF

EVALUATION OF SEISMIC SHEAR CAPACITY OF PRESTRESSED CONCRETE CONTAINMENT VESSELS WITH FIBER REINFORCEMENT

  • CHOUN, YOUNG-SUN;PARK, JUNHEE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.756-765
    • /
    • 2015
  • Background: Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. Methods: The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. Results: The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ~40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. Conclusion: The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

Correlation of response spectral values in Japanese ground motions

  • Jayaram, Nirmal;Baker, Jack W.;Okano, Hajime;Ishida, Hiroshi;McCann, Martin W. Jr.;Mihara, Yoshinori
    • Earthquakes and Structures
    • /
    • v.2 no.4
    • /
    • pp.357-376
    • /
    • 2011
  • Ground motion models predict the mean and standard deviation of the logarithm of spectral acceleration, as a function of predictor variables such as earthquake magnitude, distance and site condition. Such models have been developed for a variety of seismic environments throughout the world. Some calculations, such as the Conditional Mean Spectrum calculation, use this information but additionally require knowledge of correlation coefficients between logarithmic spectral acceleration values at multiple periods. Such correlation predictions have, to date, been developed primarily from data recorded in the Western United States from active shallow crustal earthquakes. This paper describes results from a study of spectral acceleration correlations from Japanese earthquake ground motion data that includes both crustal and subduction zone earthquakes. Comparisons are made between estimated correlations for Japanese response spectral ordinates and correlation estimates developed from Western United States ground motion data. The effect of ground motion model, earthquake source mechanism, seismic zone, site conditions, and source to site distance on estimated correlations is evaluated and discussed. Confidence intervals on these correlation estimates are introduced, to aid in identifying statistically significant differences in correlations among the factors considered. Observed general trends in correlation are similar to previous studies, with the exception of correlation of spectral accelerations between orthogonal components, which is seen to be higher here than previously observed. Some differences in correlations between earthquake source zones and earthquake mechanisms are observed, and so tables of correlations coefficients for each specific case are provided.

Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method

  • Shariatmadar, Hashem;Razavi, Hessamoddin Meshkat
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.547-564
    • /
    • 2014
  • This study focuses on the application of an active tuned mass damper (ATMD) for controlling the seismic response of an 11-story building. The control action is achieved by combination of a fuzzy logic controller (FLC) and Particle Swarm Optimization (PSO) method. FLC is used to handle the uncertain and nonlinear phenomena while PSO is used for optimization of FLC parameters. The FLC system optimized by PSO is called PSFLC. The optimization process of the FLC system has been performed for an 11-story building under the earthquake excitations recommended by International Association of Structural Control (IASC) committee. Minimization of the top floor displacement has been used as the optimization criteria. The results obtained by the PSFLC method are compared with those obtained from ATMD with GFLC system which is proposed by Pourzeynali et al. and non-optimum FLC system. Based on the parameters obtained from PSFLC system, a global controller as PSFLCG is introduced. Performance of the designed PSFLCG has been checked for different disturbances of far-field and near-field ground motions. It is found that the ATMD system, driven by FLC with the help of PSO significantly reduces the peak displacement of the example building. The results show that the PSFLCG decreases the peak displacement of the top floor by about 10%-30% more than that of the FLC system. To show the efficiency and superiority of the adopted optimization method (PSO), a comparison is also made between PSO and GA algorithms in terms of success rate and computational processing time. GA is used by Pourzeynali et al for optimization of the similar system.

Seismic progressive collapse mitigation of buildings using cylindrical friction damper

  • Mirtaheri, Masoud;Omidi, Zobeydeh;Salkhordeh, Mojtaba;Mirzaeefard, Hamid
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • The occurrence of progressive collapse induced by the removal of the vertical load-bearing element in the structure, because of fire or earthquake, has been a significant challenge between structural engineers. Progressive collapse is defined as the complete failure or failure of a part of the structure, initiating with a local rupture in a part of the building and can threaten the stability of the structure. In the current study, the behavior of the structures equipped with a cylindrical friction damper, when the vertical load-bearing elements are eliminated, is considered in two cases: 1-The load-bearing element is removed under the gravity load, and 2-The load-bearing element is removed due to the earthquake lateral forces. In order to obtain a generalized result in the seismic case, 22 pair motions presented in FEMA p 695 are applied to the structures. The study has been conducted using the vertical push down analysis for the case (1), and the nonlinear time-history analysis for the second case using OpenSEES software for 5,10, and 15-story steel frames. Results indicate that, in the first case, the load coefficient, and accordingly the strength of the structure equipped with cylindrical friction dampers are increased considerably. Furthermore, the results from the second case demonstrate that the displacements, and consequently the forces imposed to the structure in the buildings equipped with the cylindrical friction damper substantially was reduced. An optimum slip load is defined in the friction dampers, which permits the damper to start its frictional damping from this threshold load. Therefore, the optimum slip load of the damper is calculated and discussed for both cases.

The use of cost-benefit analysis in performance-based earthquake engineering of steel structures

  • Ravanshadnia, Hamidreza;Shakib, Hamzeh;Ansari, Mokhtar;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.561-570
    • /
    • 2022
  • It is of great importance to be able to evaluate different structural systems not only based on their seismic performance but also considering their lifetime service costs. Many structural systems exist that can meet the engineering requirements for different performance levels; therefore, these systems shall be selected based on their economic costs over time. In this paper, two structural systems, including special steel moment-resisting and the ordinary concentric braced frames, are considered, which are designed to meet the three performance levels: Immediate Occupancy (IO), Life Safety (LS), Collapse Prevention (CP). The seismic behavior of these two systems is studied under three strong ground motions (i.e., Tabas, Bam, Kajour earthquake records) using the Perform3D package, and the incurred damages to the studied systems are examined at two hazard levels. Economic analyses were performed to determine the most economical structural system to meet the specified performance level requirements, considering the initial cost and costs associated with damages of an earthquake that occurred during their lifetime. In essence, the economic lifetime study results show that the special moment-resisting frames at IO and LS performance levels are at least 20% more economical than braced frames. The result of the study for these building systems with different heights designed for different performance levels also shows it is more economical from the perspective of long-term ownership of the property to design for higher performance levels even though the initial construction cost is higher.