References
- Abdel-Rohman, M. (1984), "Optimal design of active TMD for buildings control" Build. Environ., 19(3), 191-195. https://doi.org/10.1016/0360-1323(84)90026-X
- Ahlawat, A.S. and Ramaswamy, A. (2002), "Multi-objective optimal design of FLC driven hybrid mass damper for seismically excited structures" Earthq. Eng. Struct. Dyn., 31(7), 1459-1479. https://doi.org/10.1002/eqe.173
- Al-Dawod, M., Samali, B. and Li, J. (2006), "Experimental verification of an active mass driver system on a five-storey model using a fuzzy controller" Struct. Cont. Hlth. Monit., 13(5), 917-943. https://doi.org/10.1002/stc.97
- Al-Dawod, M., Samali, B., Naghdy, F. and Kwok, K. (2001), "Active control of along wind response of tall building using a fuzzy controller" Eng. Struct., 23(11), 1512-1522. https://doi.org/10.1016/S0141-0296(01)00037-2
- Aly, M.A. (2014), "Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper" Smart. Struct. System, 13(3), 473-500. https://doi.org/10.12989/sss.2014.13.3.473
- Battaini, M., Casciati, F. and Faravelli, L. (1998), "Fuzzy control of structural vibration. An active mass system driven by a fuzzy controller" Earthq. Eng. Struct. Dyn., 27(11), 1267-1276. https://doi.org/10.1002/(SICI)1096-9845(1998110)27:11<1267::AID-EQE782>3.0.CO;2-D
- Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search" Eng. Struct., 33(9), 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024
- Chang, J.C.H. and Soong, T.T. (1980), "Structural control using active tuned mass dampers" J. Eng. Mech- ASME, 106(6), 1091-1098.
- Chen, H., Sun, Z. and Sun, L. (2011), "Active mass damper control for cable stayed bridge under construction: an experimental study" Struct. Eng. Mech., 38(2), 141-156. https://doi.org/10.12989/sem.2011.38.2.141
- Chen, J., Peng, W., Ge, R. and Wei, J. (2009), "Optimal design of composite laminates for minimizing delamination stresses by particle Swarm optimization combined with FEM" Struct. Eng. Mech., 31(4), 407-421. https://doi.org/10.12989/sem.2009.31.4.407
- Collins, R., Basu, B. and Broderick, B. (2006), "Control strategy using bang-bang and minimax principle for FRF with ATMDs" Eng. Struct., 28(3), 349-356. https://doi.org/10.1016/j.engstruct.2005.08.012
- Contreras, M.T., Pasala, D.T.R. and Nagarajaiah, S. (2014), "Adaptive length SMA pendulum smart tuned Mass damper performance in the presence of real time primary system stiffness change" Smart. Struct. System, 13(2), 219-233. https://doi.org/10.12989/sss.2014.13.2.219
- Farshidianfar, A. and Soheili, S. (2013a), "ABC optimization of TMD parameters for tall buildings with soil structure interaction" Interact. Multiscale. Mech., 6(4), 339-356. https://doi.org/10.12989/imm.2013.6.4.339
- Farshidianfar, A. and Soheili, S. (2013b), "Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction" Soil. Dyn. Earthq. Eng., 51(0), 14-22. https://doi.org/10.1016/j.soildyn.2013.04.002
- Gattulli, V., Di Fabio, F. and Luongo, A. (2004), "Nonlinear tuned mass damper for self-excited oscillations" Wind. Struct., 7(4), 251-264. https://doi.org/10.12989/was.2004.7.4.251
- Guclu, R. and Sertbas, A. (2005), "Evaluation of sliding mode and proportional-integral-derivative controlled structures with an active mass damper" J. Vib. Control., 11(3), 397-406. https://doi.org/10.1177/1077546305051202
- Guclu, R. and Yazici, H. (2008), "Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers" Sound. Vib., 318(1-2), 36-49. https://doi.org/10.1016/j.jsv.2008.03.058
- Hadi, M.N.S. and Arfiadi, Y. (1998), "Optimum design of absorber for MDOF structures" J. Struct. Eng- ASCE, 124(11), 1272-1280. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1272)
- Jang, D.D., Jung, H.J. and Moon, Y.J. (2014), "Active mass damper system using time delay control algorithm for building structure with unknown dynamics" Smart. Struct. System, 13(2), 305-318. https://doi.org/10.12989/sss.2014.13.2.305
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization" Proceedings of the IEEE International Conference on Neural Networks.
- Leung, A.Y.T. and Zhang, H. (2009), "Particle swarm optimization of tuned mass dampers" Eng. Struct., 31(3), 715-728. https://doi.org/10.1016/j.engstruct.2008.11.017
- Leung, A.Y.T., Zhang, H., Cheng C.C. and Lee, Y.Y. (2008), "Particle swarm optimization of TMD by nonstationary base excitation during earthquake" Earthq. Eng. Struct. Dyn., 37(9), 1223-1246. https://doi.org/10.1002/eqe.811
- Lin, P.Y., Lin, T.K. and Hwang, J.S. (2013), "A semi-active mass damping system for low- and mid-rise buildings" Earthq. Struct., 4(1), 63-84. https://doi.org/10.12989/eas.2013.4.1.063
- Lu, X., Ding, K., Shi, W. and Weng, D. (2012), "Tuned mass dampers for human-induced vibration control of the Expo Culture Centre at the World Expo 2010 in Shanghai, China" Struct. Eng. Mech., 43(5), 607-621. https://doi.org/10.12989/sem.2012.43.5.607
- Marano, G.C., Greco, R. and Chiaia, B. (2010), "A comparison between different optimization criteria for tuned mass dampers design" Sound. Vib., 329(23), 4880-4890. https://doi.org/10.1016/j.jsv.2010.05.015
- Marano, G.C., Greco, R. and Palombella, G. (2008), "Stochastic optimum design of linear tuned mass dampers for seismic protection of high towers" Struct. Eng. Mech., 29(6), 603-622. https://doi.org/10.12989/sem.2008.29.6.603
- Matta, E. (2011), "Performance of tuned mass dampers against near-field earthquakes" Struct. Eng. Mech., 39(5), 621-642. https://doi.org/10.12989/sem.2011.39.5.621
- Matta, E. (2013), "Effectiveness of tuned mass dampers against ground motion pulses" J. Struct. Eng- ASCE, 139(2), 188-198. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000629
- Nagarajaiah, S. and Jung, H.J. (2014), "Smart tuned mass dampers: recent developments" Smart. Struct. System, 13(2), 173-176. https://doi.org/10.12989/sss.2014.13.2.173
- Nagarajaiah, S. and Sonmez, E. (2007), "Structures with Semiactive Variable Stiffness Single/Multiple Tuned Mass Dampers" Struct. Eng., 133(1), 67-77. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(67)
- Nigdeli, S.M. and Bekdas, G. (2013), "Optimum tuned mass damper design for preventing brittle fracture of RC buildings" Smart. Struct. System, 12(2), 137-155. https://doi.org/10.12989/sss.2013.12.2.137
- Nishimura, I., Kobori,T., Sakamoto, M., Koshika, N., Sasaki, K. and Ohrui, S. (1992), "Active tuned mass damper" Smart. Material. Struct., 1(4), 306. https://doi.org/10.1088/0964-1726/1/4/005
-
Palazzo, B. and Petti, L. (1999), "Optimal structural control in the frequency domain: Control in norm
$H_{2}$ and$H_{{\infty}}$ " J. Struct. Cont., 6(2), 205-221. https://doi.org/10.1002/stc.4300060202 - Park, S.J., Lee, J., Jung, H.J., Jang, D.D. and Kim, S.D. (2009), "Numerical and experimental investigation of control performance of active Mass damper system to high-rise building in use" Wind. Struct., 12(4), 313-332. https://doi.org/10.12989/was.2009.12.4.313
- Pasala, D.T.R. and Nagarajaiah, S. (2014), "Adaptive-length pendulum smart tuned Mass damper using shape-memory-alloy wire for tuning period in real time" Smart. Struct. System, 13(2), 203-217. https://doi.org/10.12989/sss.2014.13.2.203
- Pourzeynali, S., Lavasani, H.H. and Modarayi, A.H. (2007), "Active control of high rise building structures using fuzzy logic and genetic algorithms" Eng. Struct., 29(3), 346-357. https://doi.org/10.1016/j.engstruct.2006.04.015
- Sadek, F., Mohraz, B., Taylor, A.W. and Chung, R.M. (1997), "A method of estimating the parameters of tuned mass dampers for seismic applications" Earthq. Eng. Struct. Dyn., 26(6), 617-635. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z
- Samali, B. and Al-Dawod, M. (2003), "Performance of a five-storey benchmark model using an active tuned mass damper and a fuzzy controller" Eng. Struct., 25(13), 1597-1610. https://doi.org/10.1016/S0141-0296(03)00132-9
- Samali, B., Al-Dawod, M., Kwok , K. and Naghdy, F. (2004), "Active control of cross wind response of 76- Story tall building using a fuzzy controller" J. Eng. Mech- ASME, 130(4), 492-498. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(492)
- Setareh, M. (2001), "Use of semi-active Mass dampers for vibration control of force-excited structures. " Struct. Eng. Mech., 11(4), 341-356. https://doi.org/10.12989/sem.2001.11.4.341
- Shariatmadar, H., Golnargesi, S. and Akbarzadeh T.M.R. (2014), "Vibration control of buildings using ATMD against earthquake excitations through interval type-2 fuzzy logic controller" Asian. J. Civil. Eng- Bhrc, 15(3), 321-338.
- Sun, C., Nagarajaiah, S. and Dick, A.J. (2014), "Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation" Smart. Struct. System, 13(2), 319-341. https://doi.org/10.12989/sss.2014.13.2.319
- Tang, H., Zhang, W., Xie, L. and Xue, S. (2013), "Multi-stage approach for structural damage identification using Particle Swarm optimization" Smart. Struct. System, 11(1), 319-341.
- Tributsch, A. and Adam, C. (2012), "Evaluation and analytical approximation of Tuned Mass Damper performance in an earthquake environment ", Smart. Struct. System, 10(2), 69-86.
- Varadarajan, N. and Nagarajaiah, S. (2004), "Wind response control of building with variable stiffness tuned mass damper using empirical mode decomposition/Hilbert transform" J. Eng. Mech- ASME, 130(4), 451-458. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(451)
- Villaverde, R. (1985), "Reduction seismic response with heavily-damped vibration absorbers" Earthq. Eng. Struct. Dyn., 13(1), 33-42. https://doi.org/10.1002/eqe.4290130105
- Villaverde, R. and Koyama, L.A. (1993), "Damped resonant appendages to increase inherent damping in buildings" Earthq. Eng. Struct. Dyn., 22(6), 491-507. https://doi.org/10.1002/eqe.4290220603
- Wang, A.P. and Lin, Y.H. (2007), "Vibration control of a tall building subjected to earthquake excitation" Sound. Vib., 299(4-5), 757-773. https://doi.org/10.1016/j.jsv.2006.07.016
- Warburton, G.B. (1982), "Optimum absorber parameters for various combinations of response and excitation parameters" Earthq. Eng. Struct. Dyn., 10(3), 381-401. https://doi.org/10.1002/eqe.4290100304
- Woo, S.S., Lee, S.H. and Chung, L. (2011), "Seismic response control of elastic and inelastic structures by using passive and semi-active tuned mass dampers" Smart. Struct. System, 8(3), 239-252. https://doi.org/10.12989/sss.2011.8.3.239
- Xu, H.b., Zhang, C.w., Li, H., Ping, T., Ou, J.p. and Zhou, F.l. (2014), "Active mass driver control system for suppressing wind-induced vibration of the Canton Tower" Smart. Struct. System, 13(2), 281-303. https://doi.org/10.12989/sss.2014.13.2.281
- Yao, J.T.P. (1972), "Concept of Structural Control" J. Struct. Div., 98(7), 1567-1574.
- Zadeh, L.A. (1975), "The concept of a linguistic variable and its application to approximate reasoning-I" Inform. Sci., 8(3), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5
Cited by
- Seismic control of buildings with active tuned mass damper through interval type-2 fuzzy logic controller including soil–structure interaction 2018, https://doi.org/10.1007/s42107-018-0016-5
- Design of double dynamic vibration absorbers for reduction of two DOF vibration system vol.57, pp.1, 2016, https://doi.org/10.12989/sem.2016.57.1.161
- A Review on Adaptive Methods for Structural Control vol.10, pp.None, 2016, https://doi.org/10.2174/1874149501610010653
- Parametric study of pendulum type dynamic vibration absorber for controlling vibration of a two DOF structure vol.13, pp.1, 2014, https://doi.org/10.12989/eas.2017.13.1.051
- Proposing optimum parameters of TMDs using GSA and PSO algorithms for drift reduction and uniformity vol.63, pp.2, 2014, https://doi.org/10.12989/sem.2017.63.2.147
- Semi-active leverage-type isolation system considering minimum structural energy vol.21, pp.3, 2018, https://doi.org/10.12989/sss.2018.21.3.373
- Adaptive sliding mode vibrations control for civil engineering earthquake excited structures vol.7, pp.3, 2014, https://doi.org/10.1007/s40435-019-00559-0
- Optimum Design of PID Controlled Active Tuned Mass Damper via Modified Harmony Search vol.10, pp.8, 2014, https://doi.org/10.3390/app10082976
- LMI based criterion for reinforced concrete frame structures vol.9, pp.4, 2020, https://doi.org/10.12989/acc.2020.9.4.407
- Advanced controller design for AUV based on adaptive dynamic programming vol.5, pp.3, 2014, https://doi.org/10.12989/acd.2020.5.3.233
- Optimized AI controller for reinforced concrete frame structures under earthquake excitation vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.001
- Smart structural control and analysis for earthquake excited building with evolutionary design vol.79, pp.2, 2014, https://doi.org/10.12989/sem.2021.79.2.131