• 제목/요약/키워드: seismic isolation system

검색결과 325건 처리시간 0.027초

액체금속로 면진설계를 위한 지침서 개발 (Development of Guidelines for seismic isolation Design of LMR)

  • 유봉;구경회;이재한
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.147-154
    • /
    • 1998
  • The purpose of this paper is to propose the draft guidelines of seismic isolation design of Liquid Metal Reactor (LMR) using high damping laminated rubber bearings. The scopes of guidelines include design requirements of a seismically isolated system and components, seismic isolator, isolation system, interface system between seismic isolation and non-seismic isolation part, qualification and acceptance tests of seismic isolator, seismic isolation reliability, and seismic safety and monitoring system. Proposed guidelines shall be revised to extend to general design guideline for nuclear facilities by further research and discussions.

  • PDF

돔 구조물의 지진응답 저감을 위한 중간 면진장치의 적용 (Application of Mid-story Isolation System for Seismic Response Reducing of Dome Structure)

  • 김기철;김수근;강주원
    • 한국공간구조학회논문집
    • /
    • 제16권4호
    • /
    • pp.37-44
    • /
    • 2016
  • The seismic isolation system reduces the seismic vibration that is transmitted from foundation to upper structure. This seismic isolation system can be classified into base isolation and mid-story isolation by the installation location. In this study, the seismic behavior of dome structure with mid-story isolation is analyzed to verify the effect of seismic isolation. Mid-story isolation is more effective than base isolation to reduce the seismic responses of roof structure. Also, this isolation would be excellent in structural characteristics and construction.

평면 비정형 구조물에 적용된 중간층 면진 시스템의 지진 응답 제어 성능 분석 (Seismic Response Control of Mid-Story Isolation System for Planar Irregular Structures)

  • 박효선;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.109-116
    • /
    • 2019
  • In this study, the seismic response is investigated by using a relatively low-rise building under torsion-prone conditions and three seismic loads with change of the location of the seismic isolation system. LRB (Lead Rubber Bearing) was used for the seismic isolator applied to the analytical model. Fixed model without seismic isolation system was set as a basic model and LB models using seismic isolation system were compared. The maximum story drift ratio and the maximum torsional angle were evaluated by using the position of the seismic layer as a variable. It was confirmed that the isolation device is effective for torsional control of planar irregular structures. Also, it was shown that the applicability of the mid-story seismic isolation system. Numerical analyses results presented that an isolator installed in the lower layer provided good control performance for the maximum story drift ratio and the maximum torsional angle simultaneously.

중간층 면진시스템이 적용된 고층건물의 면진장치 특성변화에 따른 지진응답분석 (An Analysis of Seismic Response of High - Rise Building with Mid-Story Isolation System According to Change of Characteristics of the Seismic Isolation Device)

  • 강주원
    • 대한건축학회논문집:구조계
    • /
    • 제35권8호
    • /
    • pp.149-156
    • /
    • 2019
  • In this study, dynamic responses of high - rise buildings were analyzed through the change of horizontal stiffness and yield strength among characteristics of seismic isolation system by applying middle - layer seismic isolation system to high - rise buildings of 120m height. As a result in order to prevent the displacement of the isolation layer and to control the maximum torsion angle, it is possible to appropriately control by increasing or decreasing the horizontal stiffness and the yield strength. However, depending on the maximum torsional angle and the hysteretic behavior of the seismic isolation system, excessive yield strength and horizontal stiffness increase may induce the elastic behavior of the structure and amplify the response. Therefore, it is considered that it is necessary to select the property value of the appropriate isolation device.

테프론형 기초지진격리장치의 성능평가 (Evaluation of Performance of the Teflon-Type Seismic Foundation Isolation System)

  • 손수원;김응수;나건하;김진만
    • 한국지진공학회논문집
    • /
    • 제21권3호
    • /
    • pp.125-135
    • /
    • 2017
  • Various seismic isolation methods are being applied to bridges and buildings to improve their seismic performance. Most seismic isolation systems are the structural seismic isolation systems. In this study, the seismic performance of geotechnical seismic isolation system capable of isolating the lower foundation of the bridge structure from ground was evaluated. The geotechnical seismic isolation system was built with teflon, and the model structure was made by adopting the similitude law. The response acceleration for sinusoidal waves of various amplitudes and frequencies and seismic waves were analyzed by performing 1-G shaking table experiments. Fixed foundation, Sliding foundation, and Rocking foundation were evaluated. The results of this study indicated that the Teflon-type seismic foundation isolation system is effective in reducing the acceleration transmitted to the superstructure subject to large input ground motion. Response spectrum of the Rocking and Sliding foundation structures moves to the long period, while that of Fixed foundation moves to short period.

저층 경량건물의 고성능 내진을 위한 복합면진시스템의 적용 (Application of Hybrid Seismic Isolation System to Realize High Seismic Performance for Low-rise Lightweight Buildings)

  • 천영수
    • 토지주택연구
    • /
    • 제4권2호
    • /
    • pp.185-192
    • /
    • 2013
  • 이 논문에서는 저층 경량건물을 대상으로 고성능 내진을 구현하기 위하여 적용된 복합면진시스템의 적용효과가 비선형해석과 현장실험을 통하여 제시되었다. 이 연구에서 적용된 복합면진시스템은 슬라이딩베어링(sliding bearing)과 적층고무베어링(laminated rubber bearing)을 혼용하는 방법으로 전체 면진시스템의 고유주기를 신장시키는데 있어서 적층고무베어링이 지니는 한계를 극복하기 위한 것이다. 비선형해석결과, 복합면진시스템을 채용하여 설계된 면진건물은 아주 드물게 발생하는 강진에 대해서도 최대응답변위가 허용설계변위 이내이며, 최대응답전단력이 설계지진력 이하이므로 안전하게 유지될 수 있음을 알 수 있었다. 또한 현장실험결과, 면진층의 강성은 설계 등가강성 값의 약 95.8%에 해당하는 값을 나타내 전체 면진시스템의 실제 특성이 설계값과 잘 일치하고 있음을 확인할 수 있었다.

Study on seismic response of a seismic isolation liquid storage tank

  • Xiang Li;Jiangang Sun;Lei Xu;Shujin Zhang;Lifu Cui;Qinggao Zhang;Lijie Zhu
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.337-348
    • /
    • 2024
  • This paper presents a new seismic isolation design for liquid storage tank (LST). The seismic isolation system includes: LST, flexible membrane, sand mat and rolling seismic isolation devices. Based on the mechanical equilibrium theory, the symmetric concave rolling restoring force model of the isolation device is derived. Based on the elasticity theory and restoring force model of the seismic isolation, a simplified mechanical model of LST with the new seismic isolation is established. The rationality of the seismic isolation design of LST is explored. Meanwhile, the seismic response of the new seismic isolation LST is investigated by numerical simulation. The results show that the new seismic isolation tank can effectively reduce the seismic response, especially the control of base shear and overturning moment, which greatly reduces the risk of seismic damage. The seismic reduction rate of the new seismic isolation storage tanks in Class I, II, and III sites is better than that in Class IV sites. Moreover, the seismic isolation device can effectively control the ground vibration response of storage tanks with different liquid heights. The new seismic isolation LST design provides better isolation for slender LSTs than for broad LSTs.

면진장치 특성 변화에 따른 중간층 면진시스템의 지진응답 평가 (Seismic Response Evaluation of Mid-Story Isolation System According to the Change of Characteristics of the Seismic Isolation Device)

  • 김현수;김수근;강주원
    • 한국공간구조학회논문집
    • /
    • 제18권1호
    • /
    • pp.109-116
    • /
    • 2018
  • As the number of high-rise buildings increases, a mid-story isolation system has been proposed for high-rise buildings. Due to structural problems, an appropriate isolation layer displacement is required for an isolation system. In this study, the mid-story isolation system was designed and the seismic response of the structure was investigated by varying the yield strength and the horizontal stiffness of the seismic isolation system. To do this, a model with an isolation layer at the bottom of $15^{th}$ floor of a 20-story building was used as an example structure. Kobe(1995) and Nihonkai-Chubu(1983) earthquake are used as earthquake excitations. The yield strength and the horizontal stiffness of the seismic isolation system were varied to determine the seismic displacement and the story drift ratio of the structure. Based on the analytical results, as the yield strength and horizontal stiffness increase, the displacement of the isolation layer decreases. The story drift ratio decreases and then increases. The displacement of the isolation layer and the story drift ratio are inversely proportional. Increasing the displacement of the isolation layer to reduce the story drift ratio can cause the structure to become unstable. Therefore, an engineer should choose the appropriate yield strength and horizontal stiffness in consideration of the safety and efficiency of the structure when a mid-story isolation system for a high-rise building is designed.

라이즈-스팬비에 따른 면진 아치구조물의 지진응답 분석 (The Seismic Response According to Rise-Span Ratio of the Arch Structure With Seismic Isolation)

  • 김수근;김유성;김기철;강주원
    • 한국공간구조학회논문집
    • /
    • 제18권1호
    • /
    • pp.55-65
    • /
    • 2018
  • In order to reduce the seismic response of the spatial structure, a seismic isolation system with sufficient flexibility is used. The natural period of structure with seismic isolation system got be long to avoid prominent period. In this study, The seismic response of the truss-arch structure, which is modeled in three types according to the rise-span ratio is analyzed on El-centro, Northridge and Artificial Earthquake and compared with the seismic response of the truss-arch structure with lead rubber bearing(LRB). When seismic load is applied to the truss arch with isolation system, the horizontal acceleration response of the truss arch is reduced and vertical seismic response is also reduced. The application of the seismic isolation system is effective in controlling the seismic response.

하이브리드 중간층 지진 격리 시스템과 빌딩 구조물의 동시 최적화 (Simultaneous Optimization of Hybrid Mid-Story Isolation System and Building Structure)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.51-59
    • /
    • 2019
  • A hybrid mid-story seismic isolation system with a smart damper has been proposed to mitigate seismic responses of tall buildings. Based on previous research, a hybrid mid-story seismic isolation system can provide effective control performance for reduction of seismic responses of tall buildings. Structural design of the hybrid mid-story seismic isolation system is generally performed after completion of structural design of a building structure. This design concept is called as an iterative design which is a general design process for structures and control devices. In the iterative design process, optimal design solution for the structure and control system is changed at each design stage. To solve this problem, the integrated optimal design method for the hybrid mid-story seismic isolation system and building structure was proposed in this study. An existing building with mid-story isolation system, i.e. Shiodome Sumitomo Building, was selected as an example structure for more realistic study. The hybrid mid-story isolation system in this study was composed of MR (magnetorheological) dampers. The stiffnessess and damping coefficients of the example building, maximum capacity of MR damper, and stiffness of isolation bearing were simultaneously optimized. Multi-objective genetic optimization method was employed for the simultaneous optimization of the example structure and the mid-story seismic isolation system. The optimization results show that the simultaneous optimization method can provide better control performance than the passive mid-story isolation system with reduction of structural materials.