• Title/Summary/Keyword: seismic inversion

Search Result 170, Processing Time 0.024 seconds

Seismic interval velocity analysis on prestack depth domain for detecting the bottom simulating reflector of gas-hydrate (가스 하이드레이트 부존층의 하부 경계면을 규명하기 위한 심도영역 탄성파 구간속도 분석)

  • Ko Seung-Won;Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.638-642
    • /
    • 2005
  • For gas hydrate exploration, long offset multichannel seismic data acquired using by the 4km streamer length in Ulleung basin of the East Sea. The dataset was processed to define the BSRs (Bottom Simulating Reflectors) and to estimate the amount of gas hydrates. Confirmation of the presence of Bottom Simulating reflectors (BSR) and investigation of its physical properties from seismic section are important for gas hydrate detection. Specially, faster interval velocity overlying slower interval velocity indicates the likely presences of gas hydrate above BSR and free gas underneath BSR. In consequence, estimation of correct interval velocities and analysis of their spatial variations are critical processes for gas hydrate detection using seismic reflection data. Using Dix's equation, Root Mean Square (RMS) velocities can be converted into interval velocities. However, it is not a proper way to investigate interval velocities above and below BSR considering the fact that RMS velocities have poor resolution and correctness and the assumption that interval velocities increase along the depth. Therefore, we incorporated Migration Velocity Analysis (MVA) software produced by Landmark CO. to estimate correct interval velocities in detail. MVA is a process to yield velocities of sediments between layers using Common Mid Point (CMP) gathered seismic data. The CMP gathered data for MVA should be produced after basic processing steps to enhance the signal to noise ratio of the first reflections. Prestack depth migrated section is produced using interval velocities and interval velocities are key parameters governing qualities of prestack depth migration section. Correctness of interval velocities can be examined by the presence of Residual Move Out (RMO) on CMP gathered data. If there is no RMO, peaks of primary reflection events are flat in horizontal direction for all offsets of Common Reflection Point (CRP) gathers and it proves that prestack depth migration is done with correct velocity field. Used method in this study, Tomographic inversion needs two initial input data. One is the dataset obtained from the results of preprocessing by removing multiples and noise and stacked partially. The other is the depth domain velocity model build by smoothing and editing the interval velocity converted from RMS velocity. After the three times iteration of tomography inversion, Optimum interval velocity field can be fixed. The conclusion of this study as follow, the final Interval velocity around the BSR decreased to 1400 m/s from 2500 m/s abruptly. BSR is showed about 200m depth under the seabottom

  • PDF

Depth Scaling Strategy Using a Flexible Damping Factor forFrequency-Domain Elastic Full Waveform Inversion

  • Oh, Ju-Won;Kim, Shin-Woong;Min, Dong-Joo;Moon, Seok-Joon;Hwang, Jong-Ha
    • Journal of the Korean earth science society
    • /
    • v.37 no.5
    • /
    • pp.277-285
    • /
    • 2016
  • We introduce a depth scaling strategy to improve the accuracy of frequency-domain elastic full waveform inversion (FWI) using the new pseudo-Hessian matrix for seismic data without low-frequency components. The depth scaling strategy is based on the fact that the damping factor in the Levenberg-Marquardt method controls the energy concentration in the gradient. In other words, a large damping factor makes the Levenberg-Marquardt method similar to the steepest-descent method, by which shallow structures are mainly recovered. With a small damping factor, the Levenberg-Marquardt method becomes similar to the Gauss-Newton methods by which we can resolve deep structures as well as shallow structures. In our depth scaling strategy, a large damping factor is used in the early stage and then decreases automatically with the trend of error as the iteration goes on. With the depth scaling strategy, we can gradually move the parameter-searching region from shallow to deep parts. This flexible damping factor plays a role in retarding the model parameter update for shallow parts and mainly inverting deeper parts in the later stage of inversion. By doing so, we can improve deep parts in inversion results. The depth scaling strategy is applied to synthetic data without lowfrequency components for a modified version of the SEG/EAGE overthrust model. Numerical examples show that the flexible damping factor yields better results than the constant damping factor when reliable low-frequency components are missing.

Seismic Reflection Tomography by Cell Parameterization (셀 매개변수에 의한 탄성파 반사주시 토모그래피)

  • Seo, Young-Tak;Shin, Chang-Soo;Ko, Seung-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.95-100
    • /
    • 2003
  • In this study, we developed reflection tomography inversion algorithm using Straight Ray Technique (SRT) which can calculate travel time easily and fast for complex geological structure. The inversion process begins by setting the initial velocity model as a constant velocity model that hat only impedance boundaries. The inversion process searches a layer-interface structure model that is able to explain the given data satisfactorily by inverting to minimize data misfit. For getting optimal solution, we used Gauss-Newton method that needed constructing the approximate Hessian matrix. We also applied the Marquart-Levenberg regularization method to this inversion process to prevent solution diverging. The ability of the method to resolve typical target structures was tested in a synthetic salt dome inversion. Using the inverted velocity model, we obtained the migration image close to that of the true velocity model.

Full Waveform Inversion Using Automatic Differentiation (자동 미분을 이용한 전파형 역산)

  • Wansoo, Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.242-251
    • /
    • 2022
  • Automatic differentiation automatically calculates the derivatives of a function using the chain rule once the forward operation of a function is defined. Given the recent development of computing libraries that support automatic differentiation, many researchers have adopted automatic differentiation techniques to solve geophysical inverse problems. We analyzed the advantages, disadvantages, and performances of automatic differentiation techniques using the gradient calculations of seismic full waveform inversion objective functions. The gradients of objective functions can be expressed as multiplications of the derivatives of the model parameters, wavefields, and objective functions using the chain rule. Using numerical examples, we demonstrated the speed of analytic differentiation and the convenience of complex gradient calculations for automatic differentiation. We calculated derivatives of model parameters and objective functions using automatic differentiation and derivatives of wavefields using analytic differentiation.

Numerical studies of information about elastic parameter sets in non-linear elastic wavefield inversion schemes (비선형 탄성파 파동장 역산 방법에서 탄성파 변수 세트에 관한 정보의 수치적 연구)

  • Sakai, Akio
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • Non-linear elastic wavefield inversion is a powerful method for estimating elastic parameters for physical constraints that determine subsurface rock and properties. Here, I introduce six elastic-wave velocity models by reconstructing elastic-wave velocity variations from real data and a 2D elastic-wave velocity model. Reflection seismic data information is often decoupled into short and long wavelength components. The local search method has difficulty in estimating the longer wavelength velocity if the starting model is far from the true model, and source frequencies are then changed from lower to higher bands (as in the 'frequency-cascade scheme') to estimate model elastic parameters. Elastic parameters are inverted at each inversion step ('simultaneous mode') with a starting model of linear P- and S-wave velocity trends with depth. Elastic parameters are also derived by inversion in three other modes - using a P- and S-wave velocity basis $('V_P\;V_S\;mode')$; P-impedance and Poisson's ratio basis $('I_P\;Poisson\;mode')$; and P- and S-impedance $('I_P\;I_S\;mode')$. Density values are updated at each elastic inversion step under three assumptions in each mode. By evaluating the accuracy of the inversion for each parameter set for elastic models, it can be concluded that there is no specific difference between the inversion results for the $V_P\;V_S$ mode and the $I_P$ Poisson mode. The same conclusion is expected for the $I_P\;I_S$ mode, too. This gives us a sound basis for full wavelength elastic wavefield inversion.

Seismic Moment Tensor and Its Inversion : An Overview (지진모멘트 Tensor와 전환 : 개요)

  • 김소구;우종량
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.215-231
    • /
    • 1995
  • The key concepts of seismic moment tensor are introduced in a 'physicist - oriented' style. The theory and application of seismic moment tensor which have been developed since the 1970s have become one of the most important branches in modern seismology. The description of earthquake sources in the modern seismology have led to much deeper understanding of the physics of indigenous earthquakes as well as various kinds of artificial seismic events, such as underground explosions, mining rockbursts, and reservoir induced tremors. Furthermore, with the development of digital seismological observation, some concepts, which were not included in 'classical' seismology, or not so important in 'classical' seismology, has become more and more important. It seems that it has been the time to have a new look at the fundamentals of seismology as a branch of applied physics, especially the part dealing with the physics of earthquake sources. Also in this field it may be important to clarify some fundamental concepts which, unexpectedly, have caused confusions even among professionals.

  • PDF

Seismic waveform tomography in the frequency-space domain: selection of the optimal temporal frequency for inversion

  • Yokota Toshiyuki;Matsushima Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.19-24
    • /
    • 2004
  • Frequency-space domain full-wave tomography is a promising technique for delineating detailed subsurface structure with high resolution. However, this method requires criteria for the selection of a set of optimal temporal frequency components, to achieve stability in the sequence of inversion processes together with computational efficiency. We propose a method of selecting optimal temporal frequencies, based on wavenumber continuity. The proposed method is tested numerically and is shown to be able to select an optimal set of frequency components that are sufficient to image the anomalies.

A study on the crustal structure of the continental margin in the East Sea along the Korea Peninsula using potential data (포텐셜자료를 이용한 한반도 동해 대륙주변부의 지각구조에 관한 연구)

  • Kim, Chang-Hwan;Yoo, Lee-Sun;Park, Chan-Hong;Suk, Dong-Woo
    • Journal of the Korean Geophysical Society
    • /
    • v.10 no.1
    • /
    • pp.13-25
    • /
    • 2007
  • We investigated the undulation of Moho depth and the crustal structure of the continental margin in the East Sea along the Korea Peninsula from inversion and modelling using potential data and previous seismic results. Free-air gravity anomalies generally reflect topography effect. Bouguer gravity anomalies increase toward the Ulleung Basin, indicating that Moho depth is shallower under the Ulleung Basin. Positive magnetic anomalies exist along the continental margin and decrease toward the Ulleung Basin. In analytic signal, the small anomaly in the Hupo Bank infers that the Hupo Bank is uplifted by igneous intrusion and the strong anomaly on the continental slope denotes existence of SDR(seaward dipping reflectors), which are in accordance with the location of SDR detected in previous seismic studies. The inversion result of Bouguer gravity anomaly and the 2-dimensional gravity modelling indicate that the undulation of Moho depth shallows from the continental shelf toward the Ulleung Basin. This is in good agreement with the Moho depth calculated by the previous seismic velocity model using ocean bottom seismometer(OBS). The 2-dimensional gravity modelling infers magmatic underplating zone under the lower continental crust on the continental margin of the East Sea, indicating the possible rifiting of the continental margin.

  • PDF

Comparison of the 2D/3D Acoustic Full-waveform Inversions of 3D Ocean-bottom Seismic Data (3차원 해저면 탄성파 탐사 자료에 대한 2차원/3차원 음향 전파형역산 비교)

  • Hee-Chan, Noh;Sea-Eun, Park;Hyeong-Geun, Ji;Seok-Han, Kim;Xiangyue, Li;Ju-Won, Oh
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.203-213
    • /
    • 2022
  • To understand an underlying geological structure via seismic imaging, the velocity information of the subsurface medium is crucial. Although the full-waveform inversion (FWI) method is considered useful for estimating subsurface velocity models, 3D FWI needs a lot-of computing power and time. Herein, we compare the calculation efficiency and accuracy of frequency-domain 2D and 3D acoustic FWIs. Thereafter, we demonstrate that the artifacts from 2D approximation can be partially suppressed via frequency-domain 2D FWI by employing diffraction angle filtering (DAF). By applying DAF, which employs only big reflection angle components, the impact of noise and out-of-plane reflections can be reduced. Additionally, it is anticipated that the DAF can create long-wavelength velocity structures for 3D FWI and migration.

Classification of Seismic Stations Based on the Simultaneous Inversion Result of the Ground-motion Model Parameters (지진동모델 파라미터 동시역산을 이용한 지진관측소 분류)

  • Yun, Kwan-Hee;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.183-190
    • /
    • 2007
  • The site effects of seismic stations were evaluated by conducting a simultaneous inversion of the stochastic point-source ground-motion model (STGM model; Boore, 2003) parameters based on the accumulated dataset of horizontal shear-wave Fourier spectra. A model parameter $K_0$ and frequency-dependent site amplification function A(f) were used to express the site effects. Once after a H/V ratio of the Fourier spectra was used as an initial estimate of A(f) for the inversion, the final A(f) which is considered to be the result of combined effect of the crustal amplification and loca lsite effects was calculated by averaging the log residuals at the site from the inversion and adding the mean log residual to the H/V ratio. The seismic stations were classified into five classes according to $logA_{1-10}^{max}$(f), the maximum level of the site amplification function in the range of 1 Hz < f < 10 Hz, i.e., A: $logA_{1-10}^{max}$(f) < 0.2, B: 0.2 $\leq$ $logA_{1-10}^{max}$(f) < 0.4, C: 0.4 $\leq$ $logA_{1-10}^{max}$(f) < 0.6, D: 0.6 $\leq$ $logA_{1-10}^{max}$(f) < 0.8, E: 0.8 $\leq$ $logA_{1-10}^{max}$(f). Implication of the classified result was supported by observing a shift of the dominant frequency of average A(f) for each classified stations as the class changes. Change of site classes after moving seismic stations to a better site condition was successfully described by the result of the station classification. In addition, the observed PGA (Peak Ground Acceleration)-values for two recent moderate earthquakes were well classified according to the proposed station classes.