• 제목/요약/키워드: seismic effect

검색결과 1,562건 처리시간 0.033초

변전설비 간 상호작용을 고려한 지진응답해석 (Seismic Analysis of Substation Facilities Considering Interaction Effect)

  • 장정범;황경민;서용표;이근직
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.605-612
    • /
    • 2006
  • 765kV substation facilities are most important as electric power supply network in the 21 century. So, in order to prevent interruption of electric power supply under earthquake, 765kV substation facilities have to secure the safety against the earthquake. However, even though each substation facility is interconnected mutually, seismic interaction effect doesn't be considered in the initial design. Therefore, seismic capacity evaluation of 765kV substation facilities is carried out considering the seismic interaction effect on a basis of seismic design criteria for Korean transmission and substation facilities.

  • PDF

Effect of masonry infilled panels on the seismic performance of a R/C frames

  • Aknouche, Hassan;Airouche, Abdelhalim;Bechtoula, Hakim
    • Earthquakes and Structures
    • /
    • 제16권3호
    • /
    • pp.329-348
    • /
    • 2019
  • The main objective of this experimental research was to investigate the Seismic performance of reinforced concrete frames infilled with perforated clay brick masonry wall of a type commonly used in Algeria. Four one story-one bay reinforced concrete infilled frames of half scale of an existing building were tested at the National Earthquake Engineering Research Center Laboratory, CGS, Algeria. The experiments were carried out under a combined constant vertical and reversed cyclic lateral loading simulating seismic action. This experimental program was performed in order to evaluate the effect and the contribution of the infill masonry wall on the lateral stiffness, strength, ductility and failure mode of the reinforced concrete frames. Numerical models were developed and calibrated using the experimental results to match the load-drift envelope curve of the considered specimens. These models were used as a bench mark to assess the effect of normalized axial load on the seismic performance of the RC frames with and without masonry panels. The main experimental and analytical results are presented in this paper.

끼움벽과 단주효과를 고려한 학교건축물의 내진성능평가 (Seismic Performance Evaluation of School Building Short Column Effect)

  • 주창길;한주연;박태원
    • 교육시설 논문지
    • /
    • 제21권2호
    • /
    • pp.33-39
    • /
    • 2014
  • In the case of low-rise buildings in seismic performance evaluation, lateral force resistance of the pillars affects the seismic performance of the building. Evaluation of the seismic performance of the column is determined by the holding performance is evaluated by comparing the shear strength and bending strength it was destroyed bylow intensity. In case of the school building, in order to install the large windows for ventilation and lighting of the partition walls are located between the pillars. The case of the pillars of these, shear failure occurs in the event of an earthquake is often, in the seismic performance evaluation, partition wall and the wall of the shim is evaluated ignoring, pillar of the general pillars If you have to calculate the results of the seismic performance distorted that are destroyed by bending behavior can be evaluated as often. Results of the study, when assessed by distinguishing the effective length of the column, it was found that when a seismic load is applied, it is possible to accurately predict the failure mode, reliable results of seismic performance evaluation of the school building.

Effect of poorly-compacted backfill around embedded foundations on building seismic response

  • Kim, Yong-Seok
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.549-561
    • /
    • 2012
  • Many building foundations are embedded, however it is not easy to compact the backfill around the foundation especially for the deeply embedded ones. The soil condition around the embedded foundation may affect the seismic response of a building due to the weak contact between the soil and the foundation. In this paper, the response accelerations in the short-period range and at the period of 1 second (in the long-period range) for a seismic design spectrum specified in the IBC design code were compared considering perfect and poor backfills to investigate the effect of backfill compaction around the embedded foundation. An in-house finite-element software (P3DASS) which has the capability of horizontal pseudo-3D seismic analysis with linear soil layers was used to perform the seismic analyses of the structure-soil system with an embedded foundation. Seismic analyses were carried out with 7 bedrock earthquake records provided by the Pacific Earthquake Engineering Research Center (PEER), scaling the peak ground accelerations to 0.1 g. The results indicate that the poor backfill is not detrimental to the seismic response of a building, if the foundation is not embedded deeply in the soft soil. However, it is necessary to perform the seismic analysis for the structure-soil system embedded deeply in the soft soil to check the seismic resonance due to the soft soil layer beneath the foundation, and to compact the backfill as well as possible.

부지효과를 고려한 2차원 평면상의 지진응답해석 (Seismic Response Analysis Considering the Site Effect in Two Dimensional Cases)

  • 김민규;임윤묵;김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.83-90
    • /
    • 2001
  • The site effects of local geological conditions on seismic ground motion are performed using 2D numerical method. For the analysis, a numerical method far ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. In order to verify the seismic response analysis, the results are compared with those of commercial code. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis of the site effect in 2D problem.

  • PDF

세굴을 고려한 얕은 기초 교량의 동적거동 분석 및 지진 취약도 해석 (Dynamic Behavior and Seismic Fragility Analysis of Shallow Foundation Bridge Considering Scour)

  • 김나연;송종걸
    • 한국지진공학회논문집
    • /
    • 제20권2호
    • /
    • pp.79-89
    • /
    • 2016
  • If scour is occurred at shallow foundation of bridge, seismic performance of the bridge will be reduced. In order to evaluate accurate seismic response of bridge according to scour depths, modeling of foundation reflecting scour effect is important. In this study, taking into account the effect of the reduction in embedment depth of the shallow foundation by scouring, the soil around the foundation is modelled as an equivalent soil spring with various stiffness. Seismic fragility analyses for 3 types of bridges subjected to 4 types of ground motions classified into Site Class A, B, C, D are evaluated according to several scour depths. From the fragility analysis results, it can be observed that the deeper the scour depth, the higher probability of exceeding damage states. Also, seismic failure probability of asymmetric bridge is higher than that of symmetric bridge.

압축전담 교량 내진보강공법 개발 연구 (Development of Compression-Only Bridge Seismic Reinforcement Method)

  • 장유식;윤원섭;유광호
    • 한국산업융합학회 논문집
    • /
    • 제25권6_3호
    • /
    • pp.1221-1230
    • /
    • 2022
  • In this study, a seismic reinforcement method was studied to improve the seismic performance of aged bridges. The construction method developed in this study is a compression-only bridge seismic reinforcement method, and has excellent economic feasibility and workability compared to existing construction methods. In the case of aged bridges, there was an advantage that could compensate for the disadvantages that it was difficult to apply the existing reinforcement method. For the newly developed method, the effect of reinforcement was analyzed through resin analysis. As a result of the analysis, when the reinforcement was applied, the axial reinforcement effect was excellent, and the field applicability was excellent as it showed better results than the existing seismic isolation backing method.

입력지진파에 따른 지진 시 필댐의 침하량 영향관계 분석 (Evaluation of the Effect of Input Motions on Earthquake-Induced Settlement of Embankment Dams)

  • 조성배;김남룡;김태민
    • 대한토목학회논문집
    • /
    • 제40권5호
    • /
    • pp.509-520
    • /
    • 2020
  • 현행 내진설계 일반(KDS 17 10 00)에 따르면 내진설계 시 사용하는 입력지진파에 대한 기준이 명확히 제시되어 있고 실지진파에 대해서는 표준설계응답스펙트럼에 맞추어 보정하도록하고 있으나, 실지진파 선택에 따른 영향이 사전에 평가되지 않아 지진파 선택 시 어려움이 있다. 본 연구에서는 국내외에서 발생한 실지진파에 대하여 국내 설계기준이 제시하는 표준설계응답스펙트럼에 부합하도록 보정한 후, 수치해석을 통하여 필댐의 침하량 변화를 평가하였다. 그 결과 댐 하단에 작용하는 자유장 가속도의 영향보다 댐 마루에서의 최대가속도, 댐제체를 통한 증폭 특성등 제체 상부의 거동이 침하량에 가장 큰 영향을 미치는 것으로 나타났다. 또한, 동일한 표준설계응답스펙트럼으로 보정한 입력지진파일지라도 초기 실지진파와 댐 제체에서의 증폭 특성에 따라 침하량이 달리 평가될 수 있음을 확인하였다.

기존 교각의 FRP 원통관을 이용한 내진보강의 실험연구 (The Experimental Study on the Seismic Strengthening Effect of FRP Circular Tube on the Circular Bridge Piers)

  • 황윤국;윤순종;김정호;최영민;박경훈;권태규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.973-978
    • /
    • 2003
  • This paper describes the experimental study on seismic strengthening effect of circular bridge columns with poor lap-splice details using FRP(Fiber Reinforced Plastic) wrapping, The as-built column suffered brittle failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or any ductility, The strengthening columns using FRP wrapping showed significant improvement in seismic performance due to FRP's confinement effect.

  • PDF

Methodology of seismic-response-correlation-coefficient calculation for seismic probabilistic safety assessment of multi-unit nuclear power plants

  • Eem, Seunghyun;Choi, In-Kil;Yang, Beomjoo;Kwag, Shinyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.967-973
    • /
    • 2021
  • In 2011, an earthquake and subsequent tsunami hit the Fukushima Daiichi Nuclear Power Plant, causing simultaneous accidents in several reactors. This accident shows us that if there are several reactors on site, the seismic risk to multiple units is important to consider, in addition to that to single units in isolation. When a seismic event occurs, a seismic-failure correlation exists between the nuclear power plant's structures, systems, and components (SSCs) due to their seismic-response and seismic-capacity correlations. Therefore, it is necessary to evaluate the multi-unit seismic risk by considering the SSCs' seismic-failure-correlation effect. In this study, a methodology is proposed to obtain the seismic-response-correlation coefficient between SSCs to calculate the risk to multi-unit facilities. This coefficient is calculated from a probabilistic multi-unit seismic-response analysis. The seismic-response and seismic-failure-correlation coefficients of the emergency diesel generators installed within the units are successfully derived via the proposed method. In addition, the distribution of the seismic-response-correlation coefficient was observed as a function of the distance between SSCs of various dynamic characteristics. It is demonstrated that the proposed methodology can reasonably derive the seismic-response-correlation coefficient between SSCs, which is the input data for multi-unit seismic probabilistic safety assessment.