• Title/Summary/Keyword: seismic attenuation

Search Result 145, Processing Time 0.028 seconds

Wrap-around Noise Removal by Seismic Wave Attenuation (Seismic Wave Attenuation에 의한 Wrap-around Noise의 제거)

  • 정성종
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.3
    • /
    • pp.285-291
    • /
    • 1987
  • Seismic waves are attenuated by losses of energy as they propagate through the earth. One way to model this numerically is to make the velocity a complex number, the real part giving the phase velocity and the imaginary part the attenuation. This models wave propagation in a medium for which the logarithmic decrement is independent of frequency(attenuation coefficient is proportional to frequncy). The aim is to modify forward and inverse numerical modeling so that attenuation can be specified as a function of position.

  • PDF

Seismic Wave Attenuation in the Southern Part of Korean Peninsula (한반도 남부의 지진파 감쇠특성)

  • 신진수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.44-51
    • /
    • 1998
  • A seismic attenuation formula is derived from the intensity maps of medium sized four earthquakes that occurred in the southern part of Korean peninsula. In order to obtain the seismic attenuation formula, the the coefficients of four attenuation equations representing the intensity maps are integrated using the proper weighting factors depending on the credibility of the data are assigned to. The proposed formula shows the trend of attenuation similar to the ones for the Eastern North America for the region within the epicentral distance of 200km, but produces higher attenuation at farther distances. Though the attenuation curve is not derived from the instrumental data, the result could be a useful tool for the analysis of seismic hazard in Korean peninsula.

  • PDF

Sensitivity Analysis of HAZUS Results Attenuation (지진파 감쇄식에 대한 민감도 분석 연구 (HAZUS))

  • Oh, Tae-Seok;Kim, Jun-Kyoung;Kang, Ik-Bum;Yoo, Seong-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.247-252
    • /
    • 2006
  • This study analysed the sensitivity of the attenuation functions for the seismic hazard estimation. For the seismic hazard estimation, this study used HAZUS software, which is developed originally by FEMA(USA). The scenario earthquake ($M_w=6.0$) is located the Hongsung area, where one of the recent macro earthquakes occurred in 1978. The area for seismic hazard estimation is assumed to be Boryung city in Choongnam-do. Three attenuation functions were applied for the sensitivity analysis. The results show that the attenuation functions have much influences on the seismic hazard on the various types of buildings. Therefore the attenuation function is very important factor for the seismic hazard estimation.

  • PDF

Seismic attenuation from VSP data in methane hydrate-bearing sediments (메탄 하이드레이트 부존 퇴적층으로부터 획득한 수직탄성파 (VSP) 자료에서의 탄성파 진폭 감쇠)

  • Matsushima, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • Recent seismic surveys have shown that the presence of methane hydrate (MH) in sediments has significant influence on seismic attenuation. I have used vertical seismic profile (VSP) data from a Nankai Trough exploratory well, offshore Tokai in central Japan, to estimate compressional attenuation in MH-bearing sediments at seismic frequencies of 30-110 Hz. The use of two different measurement methods (spectral ratio and centroid frequency shift methods) provides an opportunity to validate the attenuation measurements. The sensitivity of attenuation analyses to different depth intervals, borehole irregularities, and different frequency ranges was also examined to validate the stability of attenuation estimation. I found no significant compressional attenuation in MH-bearing sediments at seismic frequencies. Macroscopically, the peaks of highest attenuation in the seismic frequency range correspond to low-saturation gas zones. In contrast, high compressional attenuation zones in the sonic frequency range (10-20 kHz) are associated with the presence of methane hydrates at the same well locations. Thus, this study demonstrated the frequency-dependence of attenuation in MH-bearing sediments; MH-bearing sediments cause attenuation in the sonic frequency range rather than the seismic frequency range As a possible reason why seismic frequencies in the 30-110 Hz range were not affected in MH-bearing sediments, I point out the effect of thin layering of MH-bearing zones.

Study on the Seismic Random Noise Attenuation for the Seismic Attribute Analysis (탄성파 속성 분석을 위한 탄성파 자료 무작위 잡음 제거 연구)

  • Jongpil Won;Jungkyun Shin;Jiho Ha;Hyunggu Jun
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.51-71
    • /
    • 2024
  • Seismic exploration is one of the widely used geophysical exploration methods with various applications such as resource development, geotechnical investigation, and subsurface monitoring. It is essential for interpreting the geological characteristics of subsurface by providing accurate images of stratum structures. Typically, geological features are interpreted by visually analyzing seismic sections. However, recently, quantitative analysis of seismic data has been extensively researched to accurately extract and interpret target geological features. Seismic attribute analysis can provide quantitative information for geological interpretation based on seismic data. Therefore, it is widely used in various fields, including the analysis of oil and gas reservoirs, investigation of fault and fracture, and assessment of shallow gas distributions. However, seismic attribute analysis is sensitive to noise within the seismic data, thus additional noise attenuation is required to enhance the accuracy of the seismic attribute analysis. In this study, four kinds of seismic noise attenuation methods are applied and compared to mitigate random noise of poststack seismic data and enhance the attribute analysis results. FX deconvolution, DSMF, Noise2Noise, and DnCNN are applied to the Youngil Bay high-resolution seismic data to remove seismic random noise. Energy, sweetness, and similarity attributes are calculated from noise-removed seismic data. Subsequently, the characteristics of each noise attenuation method, noise removal results, and seismic attribute analysis results are qualitatively and quantitatively analyzed. Based on the advantages and disadvantages of each noise attenuation method and the characteristics of each seismic attribute analysis, we propose a suitable noise attenuation method to improve the result of seismic attribute analysis.

Estimating attenuation in methane hydrate bearing sediments from surface seismic data (메탄하이드레이트 부존층에서의 지진파 감쇠치 산출)

  • Lee, Kwang-Ho;Matsushima, Jun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.28-33
    • /
    • 2009
  • Methane hydrates are considered important in terms of their effect on global warming and as potential energy resources. Now, mainly the presence of a BSR and seismic velocity are used for estimation of methane hydrate concentration in the seismic reflection survey. But recent studies on seismic attenuation show that it can be used also to estimate methane hydrates concentration. In this study, we tried to estimate attenuation from 2D seismic reflection data acquired at Nankai Trough in Japan and analyzed attenuation properties in methane hydrate bearing sediments. Seismic attenuation estimated by QVO method in an offset range $125{\sim}1,575m$. We observed high attenuation in methane hydrate bearing sediments over BSR in a frequency range of 30-70Hz. Thus, this result demonstrates that seismic reflection wave within this frequency range are affected significantly by the existence of methane hydrate concentration zone.

  • PDF

Peak ground acceleration attenuation relationship for Mazandaran province using GEP algorithm

  • Ahangari, Hamed Taleshi;Jahani, Ehsan;Kashir, Zahra
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.403-410
    • /
    • 2018
  • The choice of attenuation relationships is one of the most important parts of seismic hazard analysis as using a different attenuation relationship will cause significant differences in the final result, particularly in near distances. This problem is responsible for huge sensibilities of attenuation relationships which are used in seismic hazard analysis. For achieving this goal, attenuation relationships require a good compatibility with the target region. Many researchers have put substantial efforts in their studies of strong ground motion predictions, and each of them had an influence on the progress of attenuation relationships. In this study, two attenuation relationships are presented using seismic data of Mazandaran province in the north of Iran by Genetic Expression Programming (GEP) algorithm. Two site classifications of soil and rock were considered regarding the shear wave velocity of top 30 meters of site. The quantity of primary data was 93 records; 63 of them were recorded on rock and 30 of them recorded on soil. Due to the shortage of records, a regression technique had been used for increasing them. Through using this technique, 693 data had been created; 178 data for soil and 515 data for rock conditions. The Results of this study show the observed PGA values in the region have high correlation coefficients with the predicted values and can be used in seismic hazard analysis studies in the region.

A Study on the Presumption for Attenuation Relation by MT. O-dae earthquake data in Korea (오대산 지진자료에 의한 거리감쇠식 추정에 관한 연구)

  • Kwon, Ki-Hyuk;Hwang, Wan-Seon;Yu, Hye-Ran
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.33-36
    • /
    • 2008
  • In Korean Building Code 2005(KBC-2005), the Seismic Zone Factor is regulated by separating the seismic zone into two part. This seismic zone factor is not matched to regional seismic characteristics of our country because the factor is based on International Building Code 2000 (IBC-2000) of USA. This study inquiry for having a sufficient grasp of the seismic characteristics of south Korea region and appling for the seismic cope plan. We have collected and analyzed earthquake record happened in domestic region. There are two kinds of earthquake record. One is Historical earthquake data, another is Instrumental earthquake data. I used Instrumental earthquake record data which reliance is higher than historical earthquake data for proposing attenuation formulas by analyzing a correlation the epicenter and the distance.

  • PDF

Seismic Loading Requirements for Singapore Buildings

  • Pan, Tso-Chien
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.87-98
    • /
    • 1998
  • In this paper, the potential ground motion in terms of the peak ground accelerations(PGAs) due to long-distance Sumatra earthquakes is investigated for Singapore, following the probabilistic seismic hazard assessment a, pp.oach. The case investigated differs from a conventional one, in that few attenuation equations for long-distance major earthquakes are readily available. The attenuation relationships developed for other regions of the world are thus reviewed. It is found that the existing attenuation equations, when extrapolated to distant major earthquakes, tend to underestimate the PGAs. By comparing with the PGAs recorded over long distances at stations of the Japanese Meteorological Agency for major earthquakes in Japan, an attenuation equation is chosen for this study. With the chosen attenuation equation, the probability of PGAs exceeding selected levels for various exposure periods of time is then computed. The results show that at Singapore there is a 10% probability in 50 years for the PGA at rock sites to exceed 1.1% g. In view of the results and the associated uncertainties, a base shear coefficient of 1.5% is being recommended as the tentative seismic loading in Singapore. The tentative seismic loading reflects the design value of the notional horizontal load, equal to 1.5% of the characteristic building weigh as specified in the BS code, which usualy governs the design of most buildings in Singapors.

  • PDF

A Study on Attenuation of Ground Vibration Using Hammer Generated Seismic Wave (탄성파탐사에 의한 토양층 지반진동의 감쇠연구)

  • 서만호;손호웅
    • The Journal of Engineering Geology
    • /
    • v.6 no.2
    • /
    • pp.95-102
    • /
    • 1996
  • A study on the attenuation of ground vibration was carried out on the soil layer using seismic exploration method. A 12-channel engineering seismograph was used to acquire real digital amplitude data in field work. Frequency analysis of seismic data shows maximum spectrum amplitude around 40Hz. Relative amplitude decreases exponentially as the distance increases and the attenuation factors are n = 0.25 and a = 0.13-0.20. Internal attenuation indexes(a) are 0.13 and 0.20 in the wet soil zone and the vegatated soil zone, respectively. It means that ground vibration attenuates faster in vegatated soil zone than in wet soil zone. Average internal attenuation coefficient(h) was determined to be 0.094 from seismic velocity and frequency analysis.

  • PDF