• Title/Summary/Keyword: seismic applicability

Search Result 238, Processing Time 0.029 seconds

Applications of Seismic Test using Multi-platform Shaking Table System (내진실험 연구를 위한 다지점 가진 지동대의 활용)

  • Choi, Hyoung-Suk;Kim, Nam-Sik;Cheung, Jin-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.126-131
    • /
    • 2013
  • As the testing instrument for seismic research, the multi-platform shaking table system of SESTEC in the Pusan National University was introduced to suggest the multi-support shaking table testing methods and also to investigate its ability and applicability. 2 spans single-pylon cable-stayed bridge model, 3 spans girder bridge model and nuclear piping system model are presented and the acceleration and displacement table feedbacks of the each tests are compared to verify the simultaneous excitation ability in time domain and frequency domain.

  • PDF

Seismic Response Control of Structures Using Variable Stiffness and Variable Damping Devices (가변강성 및 가변감쇠 조절장치를 이용한 구조물의 지진응답제어)

  • 고현무;옥승용;우지영;박관순
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.449-456
    • /
    • 2003
  • Hybrid semi-active control system is applied to improve the seismic peformance of the building structure against earthquake excitation and the LQR-based semi-active control algorithm is developed to tune the integrated stiffness/damping characteristics of the hybrid system complementarily. Numerical simulation for a 8-story shear building has been carried out to verify the applicability and effectiveness of the proposed method. Analysis results showed that the hybrid system can be a compromising solution to the seismic response control problem, compared with conventional variable stiffness or variable damping systems. Comparison results proved that the proposed algorithm can perform refined tuning of the stiffness and damping coefficients of the hybrid semi-active control system better than sliding mode control algorithm.

  • PDF

Soil-Structure Interaction Analysis of Suspension Bridge for Multiple-Support Seismic Input (다지지점 지진입력에 대한 현수교의 지반-구조물 상호작용해석)

  • 김재민;이명규;신용우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.182-189
    • /
    • 2003
  • Member actions of long-span suspension bridge due to multiple-support motion are generally larger than those for synchronous support motion frequently employed in aseismic design of a conventional structure. In this study, all the sources of the asynchronous support motion are considered including the loss of coherence and the soil-structure interaction as well as the time delay due to wave propagation of seismic waves. The substructure technique analyzing total soil-foundation-structure system as a superposition of two sub-structures including soil-foundation system and structure itself is employed for the seismic response analysis of the suspension bridge. Finally, an application example is presented to demonstrate applicability of the proposed methodology.

  • PDF

An Evaluation Scheme of Torsional Irregularity for Seismic Design of Hanok (한옥의 내진설계를 위한 비틀림비정형 평가 방안)

  • Kim, Yeong-Min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.191-198
    • /
    • 2019
  • In this paper the evaluation scheme for determining torsional irregularity of Hanok has been proposed. The proposed method can evaluate torsional irregularity of Hanok easily only with characteristics of Hanok shapes, arrangement of lateral load resisting frames and their lateral stiffness without time consuming and complicate 3-dimensional structural analysis. The proposed formula is expressed as allowable maximum eccentricity, and torsional irregularity is evaluated by comparing this value with actual eccentricity. The applicability of the proposed scheme was evaluated by applying it to the line shape plan Hanok with two symmetrically arranged walls and the result was expressed by formula and graph. The results showed that the allowable maximum eccentricity is 10% of plan dimension perpendicular to the seismic load when the walls are placed at the extreme end. The proposed formula was expressed as a generalized formula so it can be applied generally to the various plan shape and wall arrangement of Hanok.

Vertical Distribution of Seismic Load Considering Dynamic Characteristics of Based Isolated Building Structures (면진건축물의 동적특성을 고려한 층지진하중 분배식의 제안)

  • 이동근;홍장미
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.11-22
    • /
    • 1999
  • In this study, the validity of the currently used seismic regulations for seismic isolated building structures is investigated, and a new formula for vertical distribution of seismic load is proposed. The distribution formula in UBC-91 did not provide sufficient safety, and thus revised in 1994. However it is pointed out that the revised formula overestimates the seismic load because of its similarity to that of the fixed-base structure. Therefore, in the proposed approach, it is intended to satisfy safety, economy, and applicability by combining the mode shapes of the seismic isolated structure idealized as two degrees of freedom system and those of fixed-base structure. For verification of the proposed formula, both a moment resisting frame and a shear wall system are analyzed. The results obtained from the proposed method turn out to be close to the results from a dynamic analysis.

  • PDF

Evaluation of the applicability of the surface wave method to rock fill dams (사력댐에서의 표면파 기법 적용성 평가 연구)

  • Kim, Jong-Tae;Kim, Dong-Soo;Park, Heon-Joon;Bang, Eun-Seok;Kim, Sung-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.9-23
    • /
    • 2010
  • In current design practice, the shear wave velocity (Vs) of the core and rock-fill zone of a dam, one of the characteristics essential for seismic response design, is seldom determined by field tests. This is because the borehole seismic method is often restricted in application, due to stabilisation activities and concern for the security of the dam structure, and surface wave methods are limited by unfavourable in-situ site conditions. Consequently, seismic response design for a dam may be performed using Vs values that are assumed, or empirically determined. To estimate Vs for the core and rock-fill zone, and to find a reliable method for measuring Vs, seismic surface wave methods have been applied on the crest and sloping surface of the existing 'M' dam. Numerical analysis was also performed to verify the applicability of the surface wave method to a rock-fill dam. Through this numerical analysis and comparison with other test results, the applicability of the surface wave method to rock-fill dams was verified.

Development of a Design Seismic Wave Time History Generation Technique Corresponding to the Recorded Seismic Wave-Based Design Response Spectrum (계측 지진파 기반 설계응답스펙트럼에 상응하는 설계 지진파 시간이력 생성 기법 개발)

  • Oh, Hyun Ju;Park, Hyung Choon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.687-695
    • /
    • 2021
  • With the recent occurrence of large-scale earthquakes in Korea, the importance of seismic design has greatly increased. Seismic design standards stipulate that dynamic time history analysis be performed for important or special structures. In the seismic analysis and design of such structures, determining a rational design input seismic wave is a very important factor in ensuring the reliability of the analysis and design. In the seismic design standards, rational design seismic waves must reflect the characteristics of the area (fault) and satisfy the design response spectrum for each seismic performance level. This requirement can be partially satisfied by modifying the actual seismic wave measured in the area (fault) according to the design response spectrum. In this study, a method of correcting and generating seismic wave time histories according to the design response spectrum based on actual measured seismic waves using the harmonic wavelet transform was proposed. To examine the applicability of the proposed technique, the technique was applied to earthquakes of magnitude 5.8 and 5.4, respectively, that occurred in Gyeongju (2016) and Pohang (2017), and the seismic wave time histories corresponding to the design response spectrum were modified and generated.

Strain-based seismic failure evaluation of coupled dam-reservoir-foundation system

  • Hariri-Ardebili, M.A.;Mirzabozorg, H.;Ghasemi, A.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.85-110
    • /
    • 2013
  • Generally, mass concrete structural behavior is governed by the strain components. However, relevant guidelines in dam engineering evaluate the structural behavior of concrete dams using stress-based criteria. In the present study, strain-based criteria are proposed for the first time in a professional manner and their applicability in seismic failure evaluation of an arch dam are investigated. Numerical model of the dam is provided using NSAD-DRI finite element code and the foundation is modeled to be massed using infinite elements at its far-end boundaries. The coupled dam-reservoir-foundation system is solved in Lagrangian-Eulerian domain using Newmark-${\beta}$ time integration method. Seismic performance of the dam is investigated using parameters such as the demand-capacity ratio, the cumulative inelastic duration and the extension of the overstressed/overstrained areas. Real crack profile of the dam based on the damage mechanics approach is compared with those obtained from stress-based and strain-based approaches. It is found that using stress-based criteria leads to conservative results for arch action while seismic safety evaluation using the proposed strain-based criteria leads to conservative cantilever action.

Seismic Design of Bridges in Moderate Seismic Region and Response Modification Factors (중진지역 교량 내진설계와 응답수정계수)

  • Kook, Seung-Kyu;Lee, Dong-Uk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.65-72
    • /
    • 2009
  • ‘Korean Highway Bridge Design Code’ provides the spectrum analysis method with response modification factors for the seismic design of typical bridges. However, considering that korean peninsula is classified as moderate seismic regions and domestic circumstances for bridge design and construction are different from other countries, the applicability of this code is not yet proved. Therefore it is required to verify that applying the spectrum analysis method fulfills the no collapse requirement which is set forth as the basic seismic design concept. In this study two typical bridges with T and ${\prod}$ type piers are selected as analysis bridges and seismic designs are carried out by applying the spectrum analysis method with design conditions given for moderate seismic regions. Based on the results obtained through deign procedures, the role of the response modification factors and fulfillment of the no collapse requirement are discussed, from which supplementary provisions for the design code are identified.

A Study on the Applicability of Amplification Factor to Estimate Peak Ground Acceleration of Pohang Area (국내 내진설계기준의 지반증폭계수를 활용한 포항지역의 지표면 최대가속도 산출 적절성 검토)

  • Kim, Jongkwan;Han, Jin-Tae;Kwak, Tae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.21-33
    • /
    • 2020
  • Ground response analysis has been conducted for each borehole data in Pohang area, using 1D equivalent linear method program, to investigate the applicability of amplification factor to estimate peak ground acceleration. Earthquake motions for ground response analysis were prepared by matching response spectrums for return period of 500, 1000, and 2400 years suggested by seismic design code (MOIS, 2017). Ground survey data were acquired from Geotechnical Information DB System. It has been confirmed that response spectrum obtained from ground response analysis showed good agreement with those from seismic design code irrespective of ground classification. However, PGA (Peak Ground Accelerations) of ground response analysis did not coincide with PGA calculated using amplification factor suggested by seismic design code.