• Title/Summary/Keyword: seismic

Search Result 8,031, Processing Time 0.034 seconds

Aeromagnetic Interpretation of the Southern and Western Offshore Korea (한국 서남근해에 대한 항공자력탐사 해석)

  • Baag Czango;Baag Chang-Eob
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.51-57
    • /
    • 1994
  • Analysis of the aeromagnetic data aquired by US Navy in the year 1969 permits us to predict a new sedimentary basin, Heugsan Basin, south of the known Gunsan Basin in Block Ⅱ. The basin appears to consist of three sub-basins trending NNW-SSE. The results of our analysis provide not only an independent assessment of the Gunsan Basin, but also new important information on the tectonic origin and mechanism for the two basins as well as for the entire region. The basin forming tectonic style is interpreted as rhombochasm associated with double overstepped left-lateral wrench faults. From the magnetic evidence, a few NE-SW trending major onshore faults are extended to the study area. We also interpreted the nature of the faults to be left-lateral wrenches. This new gross structural style is consistent with the results of recent Yeongdong Basin analysis by Lee. The senses of fault movement are also supported by the paleomagnetic evidence that the Philippine Sea had experienced an 80-degree clockwise rotation since the Eocene. Based on a 2 $\frac{1}{2}$ model study the probable maximum thickness of the sediments in the Gunsan Basin is approximately 7500 meters. We believe that the new Heugsan Basin was left unidentified because a high velocity layer may be overlying the basin. Because the overall structural configuration of the Heugsan Basin appears to be favorable for hydrocarbon accumulation, a detailed airborne magnetic survey is recommended in the area in order to verify the magnetic expression of this thick basin. A detailed subsequent marine gravity survey is also recommended in order to delineate the sedimentary section and to acquire supplemental data to the magnetic method only if an overlying high velocity layer is confirmed. Otherwise a high energy source seismic survey may be more effective.

  • PDF

Stratigraphy and Provenance of Non-marine Sediments in the Tertiary Cheju Basin (제주분지 제삼기 육성층의 층서 및 퇴적물 기원)

  • Kwon Young-In;Park Kwan-Soon;Yu Kang-Min;Son Jin-Dam
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.1-15
    • /
    • 1995
  • Seismic reflection profiles and exploratory drilling well samples from the southern marginal-continental shelf basin of Korea delineate that the Tertiary sedimentary sequences can be grouped into five sequences (Sequence A, Sequence B, Sequence C, Sequence D and Sequence E, in descending order). Paleontologic data, K-Ar age datings, correlation with tuff layers and sequence stratigraphic analysis reveal that the sequences A, B, C, D and E can be considered as the deposits of Holocene $\~$ Pleistocene, Pliocene, Late Miocene, Early $\~$ Middle Miocene and Oligocene, respectively. The sequence stratigraphic and structural analyses suggest that the southern part of the Cheju Basin had experienced severe folding and faulting. NE-SW trending strike-slip movement is responsible for the deformation. The sinistral movement of strike-slip fault ceased before the deposition of Sequence B. Age dating and rare-earth elements analysis of volvanic rocks reveal+ that the Sequence D was deposited during the Early $\~$ Middle Miocene and the Sequence I was deposited earlier than the deposition of the Green Tuff Formation. Sedimentary petrological studies indicate that sediments of the Sequence I came from the continental block provenance. After the deposition of the Sequence E, uplift of the source area resulted in increase of sediment supply, subsidence and volcanic activities. The Sequence D show these factors and the sediments of the Sequence D are considered to be transported from the recycled orogenic belt.

  • PDF

Surface Change Detection in the March 5Youth Mine Using Sentinel-1 Interferometric SAR Coherence Imagery (Sentinel-1 InSAR 긴밀도 영상을 이용한 3월5일청년광산의 지표 변화 탐지)

  • Moon, Jihyun;Kim, Geunyoung;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.531-542
    • /
    • 2021
  • Open-pit mines require constant monitoring as they can cause surface changes and environmental disturbances. In open-pit mines, there is little vegetation at the mining site and can be monitored using InSAR (Interferometric Synthetic Aperture Radar) coherence imageries. In this study, activities occurring in mine were analyzed by applying the recently developed InSAR coherence-based NDAI (Normalized Difference Activity Index). The March 5 Youth Mine is a North Korean mine whose development has been expanded since 2008. NDAI analysis was performed with InSAR coherence imageries obtained using Sentinel-1 SAR images taken at 12-day intervals in the March 5 Youth Mine. First, the area where the elevation decreased by about 75.24 m and increased by about 9.85 m over the 14 years from 2000 was defined as the mining site and the tailings piles. Then, the NDAI images were used for time series analysis at various time intervals. Over the entire period (2017-2019), average mining activity was relatively active at the center of the mining area. In order to find out more detailed changes in the surface activity of the mine, the time interval was reduced and the activity was observed over a 1-year period. In 2017, we analyzed changes in mining operations before and after artificial earthquakes based on seismic data and NDAI images. After the large-scale blasting that occurred on 30 April 2017, activity was detected west of the mining area. It is estimated that the size of the mining area was enlarged by two blasts on 30 September 2017. The time-averaged NDAI images used to perform detailed time-series analysis were generated over a period of 1 year and 4 months, and then composited into RGB images. Annual analysis of activity confirmed an active region in the northeast of the mining area in 2018 and found the characteristic activity of the expansion of tailings piles in 2019. Time series analysis using NDAI was able to detect random surface changes in open-pit mines that are difficult to identify with optical images. Especially in areas where in situ data is not available, remote sensing can effectively perform mining activity analysis.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

Characterization of Fault Kinematics based on Paleoseismic Data in the Malbang area in the Central Part of the Ulsan Fault Zone (고지진학적 자료를 이용한 울산단층대 중부 말방지역에서의 단층운동 특성 해석)

  • Park, Kiwoong;Prasanajit, Naik Sambit;Gwon, Ohsang;Shin, Hyeon-Cho;Kim, Young-Seog
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.151-164
    • /
    • 2022
  • According to the records of historical and instrumental earthquakes, the southeastern part of the Korean Peninsula is considered the highest seismic activity area. Owing to recent reports of numerous Quaternary faults along the Yangsan and Ulsan fault zones, paleoseismological studies are being actively conducted in these areas. The study area is located in the central part of the Ulsan fault zone, where the largest number of active faults have been reported. Based on lineament and geomorphic analysis using LiDAR images and aerial photographs, fault-related landforms showing topographic relief were observed and a trench survey was conducted. The trench length 20 m, width 5 m, depth 5 m is located approximately 300 m away to the northeast from the previously reported Malbang fault. From the trench section, we interpreted the geometric and kinematic characteristics of the fault based on the deformed features of the Quaternary sedimentary layers. The attitude of the reverse fault, N26°W/33°NE, is similar to those of the reported faults distributed along the Ulsan fault zone. Although a single apparent displacement of approximately 40 cm has been observed, the true displacement could not be calculated due to the absence of the slickenline on the fault plane. Based on the geochronological results of the cryogenic structure proposed in a previous study, the most recent faulting event has been estimated as being earlier than the late Wurm glaciation. We interpreted the thrust fault system of the study area as an imbrication structure based on the previous studies and the fault geometry obtained in this additional trench. Although several previous investigations including many trench surveys have been conducted, they found limited success in obtaining the information on fault parameters, which could be due to complex characteristics of the reverse fault system. Additional paleoseismic studies will contribute to solving the mentioned problems and the comprehensive fault evolution.

A Study on Risk Assessment Method for Earthquake-Induced Landslides (지진에 의한 산사태 위험도 평가방안에 관한 연구)

  • Seo, Junpyo;Eu, Song;Lee, Kihwan;Lee, Changwoo;Woo, Choongshik
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.694-709
    • /
    • 2021
  • Purpose: In this study, earthquake-induced landslide risk assessment was conducted to provide basic data for efficient and preemptive damage prevention by selecting the erosion control work before the earthquake and the prediction and restoration priorities of the damaged area after the earthquake. Method: The study analyzed the previous studies abroad to examine the evaluation methodology and to derive the evaluation factors, and examine the utilization of the landslide hazard map currently used in Korea. In addition, the earthquake-induced landslide hazard map was also established on a pilot basis based on the fault zone and epicenter of Pohang using seismic attenuation. Result: The earthquake-induced landslide risk assessment study showed that China ranked 44%, Italy 16%, the U.S. 15%, Japan 10%, and Taiwan 8%. As for the evaluation method, the statistical model was the most common at 59%, and the physical model was found at 23%. The factors frequently used in the statistical model were altitude, distance from the fault, gradient, slope aspect, country rock, and topographic curvature. Since Korea's landslide hazard map reflects topography, geology, and forest floor conditions, it has been shown that it is reasonable to evaluate the risk of earthquake-induced landslides using it. As a result of evaluating the risk of landslides based on the fault zone and epicenter in the Pohang area, the risk grade was changed to reflect the impact of the earthquake. Conclusion: It is effective to use the landslide hazard map to evaluate the risk of earthquake-induced landslides at the regional scale. The risk map based on the fault zone is effective when used in the selection of a target site for preventive erosion control work to prevent damage from earthquake-induced landslides. In addition, the risk map based on the epicenter can be used for efficient follow-up management in order to prioritize damage prevention measures, such as to investigate the current status of landslide damage after an earthquake, or to restore the damaged area.

Estimation of Dynamic Material Properties for Fill Dam : II. Nonlinear Deformation Characteristics (필댐 제체 재료의 동적 물성치 평가 : II. 비선형 동적 변형특성)

  • Lee, Sei-Hyun;Kim, Dong-Soo;Choo, Yun-Wook;Choo, Hyek-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.87-105
    • /
    • 2009
  • Nonlinear dynamic deformation characteristics, expressed in terms of normalized shear modulus reduction curve (G/$G_{max}-\log\gamma$, G/$G_{max}$ curve) and damping curve (D-$\log\gamma$), are important input parameters with shear wave velocity profile ($V_s$-profile) in the seismic analysis of (new or existing) fill dam. In this paper, the reasonable and economical methods to evaluate the nonlinear dynamic deformation characteristics for core zone and rockfill zone respectively are presented. For the core zone, 111 G/$G_{max}$ curves and 98 damping curves which meet the requirements of core material were compiled and representative curves and ranges were proposed for the three ranges of confining pressure (0~100 kPa, 100 kPa~200 kPa, more than 200 kPa). The reliability of the proposed curves for the core zone were verified by comparing with the resonant column test results of two kinds of core materials. For the rockfill zone, 135 G/$G_{max}$ curves and 65 damping curves were compiled from the test results of gravelly materials using large scale testing equipments. The representative curves and ranges for G/$G_{max}$ were proposed for the three ranges of confining pressure (0~50 kPa, 50 kPa~100 kPa, more than 100 kPa) and those for damping were proposed independently of confining pressure. The reliability of the proposed curves for the rockfill zone were verified by comparing with the large scale triaxial test results of rockfill materials in the B-dam which is being constructed.

Preliminary Results of Marine Heat Flow Measurements in the Chukchi Abyssal Plain, Arctic Ocean, and Constraints on Crustal Origin (북극 척치 해저평원의 해양지열관측 초기결과와 지각기원에 대한 의미)

  • Kim, Young-Gyun;Hong, Jong Kuk;Jin, Young Keun;Jang, Minseok;So, Byung Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.113-126
    • /
    • 2022
  • The tectonic history of the Chukchi Abyssal Plain in the Amerasia Basin, Arctic Ocean, has not been fully explored due to the harsh conditions of sea ice preventing detailed observation. Existing models of the tectonic history of the region provide contrasting interpretation of the timing of formation of the crust (Mesozoic to Cenozoic), crust type (from hyper-extended continental crust to oceanic crust), and formation process (from parallel/fan-shaped rifting to transformation faulting). To help determine the age of the oceanic crust, the geothermal gradient was measured at three stations in the south of abyssal plain at depth of 2,160-2,250 m below sea level. Heat flow measurement stations were located perpendicular to the spreading axis over a 40 km-long transect. In-situ thermal conductivity measurement, corrected by the laboratory test, gave observed marine heat flows of 55 to 61 mW/m2. All measurements were taken during Arctic expeditions in 2018 (ARA09C expedition) and 2021 (ARA12C expedition) by the Korean ice-breaking research vessel (IBRV) Araon. Given the assumption of oceanic crust, the results correspond to formation in the Late Cretaceous (Mesozoic). The inferred age supports the hypothesis of formation activated by the opening of the Makarov Basin during the Late Mesozoic-Cenozoic. This would make it contemporaneous with rifting of the Chukchi Border Land immediately east of the abyssal plain. The heat flow data indicate the base of the gas hydrate stability zone is located 332-367 m below the seafloor, this will help to identify the gas hydrate-related bottom simulating reflector in the future seismic survey, as already identified on the Chukchi Plateau. Further geophysical surveys, including heat flow measurements, are required to increase our understanding of the formation process and thermal mantle structure of the abyssal plain.

Analysis of Crustal Velocity Structure Beneath Gangwon Province, South Korea, Using Joint Inversion of Receiver Functions and Surface Wave Dispersion (수신함수와 표면파 분산의 연합 역산을 사용한 강원도 지역 하부의 지각속도구조 분석)

  • Jeong-Yeon Hwang;Sung-Joon Chang
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.277-291
    • /
    • 2023
  • To analyze the crustal velocity structures beneath 21 broadband seismic stations in Gangwon Province, South Korea, we first applied the H-κ stacking method to 139 teleseismic event data (Mw ≥ 5.8 and the epicentral distance of 30° - 90°) occurring between March 18, 2019 and December 31, 2022 to estimate the Moho depths and Vp/Vs ratios beneath each station. The Moho depths and Vp/Vs ratios from the H-κ stacking method range from 24.9 to 33.2 km depth and 1.695 - 1.760, respectively, and the estimated Vp/Vs ratios were applied to the joint inversion of receiver functions and surface wave dispersion to obtain 1-D crustal velocity models beneath each station. The resulting Moho depths range from 25.9 to 33.7 km depth, similar to the results from the H-κ stacking method. Moho depth results from the both methods are generally consistent with Airy's isostasy. The 1-D crustal velocity models confirm that the existence of 2 km thick low-velocity layers with P-wave velocities of 5 km/s or less at some stations in the Taebaeksan basin, and at the stations CHNB and GAPB in northern Gangwon Province, which are located above the Cenozoic sedimentary layer. The station SH2B, although not overlying a sedimentary layer, has a low P-wave velocity near the surface, which is probably due to various factors such as weathering of the bedrock. We also observe a velocity inversion with decreasing velocity with depth at all stations within 4 - 12 km depths, and mid-crustal discontinuities possibly due to density differences in the rocks at around 10 km depth below some stations.

One-Dimensional Consolidation Simulation of Kaolinte using Geotechnical Online Testing Method (온라인 실험을 이용한 카올리나이트 점토의 일차원 압밀 시뮬레이션)

  • Kwon, Youngcheul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.247-254
    • /
    • 2006
  • Online testing method is one of the numerical experiment methods using experimental information for a numerical analysis directly. The method has an advantage in that analysis can be conducted without using an idealized mechanical model, because mechanical properties are updated from element test for a numerical analysis in real time. The online testing method has mainly been used for the geotechnical seismic engineering, whose major target is sand. A testing method that may be applied to a consolidation problem has recently been developed and laboratory and field verifications have been tried. Although related research thus far has mainly used a method to update average reaction for a numerical analysis by positioning an element tests at the center of a consolidation layer, a weakness that accuracy of the analysis can be impaired as the thickness of the consolidation layer becomes more thicker has been pointed out regarding the method. To clarify the effectiveness and possible analysis scope of the online testing method in relation to the consolidation problem, we need to review the results by applying experiment conditions that may completely exclude such a factor. This research reviewed the results of the online consolidation test in terms of reproduction of the consolidation settlement and the dissipation of excess pore water pressure of a clay specimen by comparing the results of an online consolidation test and a separated-type consolidation test carried out under the same conditions. As a result, the online consolidation test reproduced the change of compressibility according effective stress of clay without a huge contradiction. In terms of the dissipation rate of excess pore water pressure, however, the online consolidation test was a little faster. In conclusion, experiment procedure needs to improve in a direction that hydraulic conductivity can be updated in real time so as to more precisely predict the dissipation of excess pore water pressure. Further research or improvement should be carried out with regard to the consolidation settlement after the end of the dissipation of excess pore water pressure.