• 제목/요약/키워드: segmentation method

검색결과 2,159건 처리시간 0.036초

객체기반 비디오 편집 시스템을 위한 불확실 영역기반 사용자 지원 비디오 객체 분할 기법 (Uncertain Region Based User-Assisted Segmentation Technique for Object-Based Video Editing System)

  • 유홍연;홍성훈
    • 한국멀티미디어학회논문지
    • /
    • 제9권5호
    • /
    • pp.529-541
    • /
    • 2006
  • 본 논문에서는 객체기반 비디오 부호화 또는 멀티미디어 편집을 위한 반지동 비디오 객체 분할방식을 제안한다. 반자동 객체분할은 사용자 지원에 의한 분할 방식으로, 비디오 시퀀스의 초기 프레임에서 사용자가 관심객체의 경계를 표시하고 이후의 영상 프레임의 객체를 배경으로부터 연속적으로 분리해 낸다. 제안된 방식은 부분적으로 사용자 조력에 의한 프레임내 분할과 완전 자동에 의한 프레임간 분할 처리과정으로 구성되는데, 영상 전체에 대해 연산을 수행하는 기존 방식과는 달리 객체 경계가 존재하는 영상영역 부분에서만 연산을 수행한다. 프레임내 분할은 사용자가 관심객체의 경계를 지정하고, 이 경계 주위 화소들의 유사성을 이용한 후처리에 의해 정확한 초기 객체를 구한다. 프레임간 분할에서는 이전 프레임에서 추출한 객체의 경계 정보에 근거하여 시간적 유사성을 구한 후 경계와 영역 추적에 의해 연속적으로 동영상 객체를 추출한다. 실험결과로부터 제안된 방식은 비디오 편집, 객체기반 비디오 압축 및 인덱싱 등의 멀미디어 응용에 사용 가능할 정도로 안정되고 정확한 객체추출을 수행함을 확인하였다. 이 결과를 바탕으로 다수의 편리한 기능을 포함한 비디오 편집시스템을 개발하였다.

  • PDF

통계 정보와 유전자 학습에 의한 최적의 문장 분할 위치 결정 (Determination of an Optimal Sentence Segmentation Position using Statistical Information and Genetic Learning)

  • 김성동;김영택
    • 전자공학회논문지C
    • /
    • 제35C권10호
    • /
    • pp.38-47
    • /
    • 1998
  • 실용적인 기계번역 시스템을 위한 구문 분석은 긴 문장의 분석을 허용하여야 하는데 긴 문장의 분석은 높은 분석의 복잡도 때문에 매우 어려운 문제이다. 본 논문에서는 긴 문장의 효율적인 분석을 위해 문장을 분할하는 방법을 제안하며 통계 정보와 유전자 학습에 의한 최적의 문장 분할 위치 결정 방법을 소개한다. 문장 분할 위치의 결정은 분할 위치가 태그된 훈련 데이타에서 얻어진 어휘 문맥 제한 조건을 이용하여 입력문장의 분할 가능 위치를 결정하는 부분과 여러 개의 분할 가능 위치 중에서 안전한 분할을 보장하고 보다 많은 분석의 효율 향상을 얻을 수 있는 최적의 분할 위치를 학습을 통해 선택하는 부분으로 구성된다. 실험을 통해 제안된 문장 분할 위치 결정 방법이 안전한 분할을 수행하며 문장 분석의 효율을 향상시킴을 보인다.

  • PDF

Independent Component Analysis를 이용한 의료영상의 자동 분할에 관한 연구 (A Study of Automatic Medical Image Segmentation using Independent Component Analysis)

  • 배수현;유선국;김남형
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.64-75
    • /
    • 2003
  • Medical image segmentation is the process by which an original image is partitioned into some homogeneous regions like bones, soft tissues, etc. This study demonstrates an automatic medical image segmentation technique based on independent component analysis. Independent component analysis is a generalization of principal component analysis which encodes the higher-order dependencies in the input in addition to the correlations. It extracts statistically independent components from input data. Use of automatic medical image segmentation technique using independent component analysis under the assumption that medical image consists of some statistically independent parts leads to a method that allows for more accurate segmentation of bones from CT data. The result of automatic segmentation using independent component analysis with square test data was evaluated using probability of error(PE) and ultimate measurement accuracy(UMA) value. It was also compared to a general segmentation method using threshold based on sensitivity(True Positive Rate), specificity(False Positive Rate) and mislabelling rate. The evaluation result was done statistical Paired-t test. Most of the results show that the automatic segmentation using independent component analysis has better result than general segmentation using threshold.

새로운 결합척도를 이용한 동영상 분할 (Video Segmentation Using New Combined Measure)

  • 최재각;이시웅;남재열
    • 대한전자공학회논문지SP
    • /
    • 제40권1호
    • /
    • pp.51-62
    • /
    • 2003
  • 본 논문에서는 분할기반 영상 부호화를 위한 새로운 영상 분할 알고리즘을 제안한다. 제안된 방법은 움직임과 밝기 정보에 기반한 새로운 유사성 척도를 사용한다. 그리고 하나의 분할 단계 내에 밝기와 움직임 정보가 함께 결합된다. 영상 분할은 분수령 알고리즘에 기반한 영역 확장법을 통해 이루처지며, 연속된 프레임에 대한 분할은 분할결과가 시간축으로 일관성을 유지하도록 추적방법을 통해 이루어진다. 모의실험결과, 제안된 방법이 통계적 척도만을 사용한 방법과는 달리, 물체의 경계를 결정하는데 효과적임을 보였다.

The Image Segmentation Method using Adaptive Watershed Algorithm for Region Boundary Preservation

  • Kwon, Dong-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권1호
    • /
    • pp.39-46
    • /
    • 2019
  • This paper proposes an adaptive threshold watershed algorithm, which is the method used for image segmentation and boundary detection, which extends the region on the basis of regional minimum point. First, apply adaptive thresholds to determine regional minimum points. Second, it extends the region by applying adaptive thresholds based on determined regional minimum points. Traditional watershed algorithms create over-segmentation, resulting in the disadvantages of breaking boundaries between regions. These segmentation results mainly from the boundary of the object, creating an inaccurate region. To solve these problems, this paper applies an improved watershed algorithm applied with adaptive threshold in regional minimum point search and region expansion in order to reduce over-segmentation and breaking the boundary of region. This resulted in over-segmentation suppression and the result of having the boundary of precisely divided regions. The experimental results show that the proposed algorithm can apply adaptive thresholds to reduce the number of segmented regions and see that the segmented boundary parts are correct.

Tracking of Multiple Vehicles Using Occlusion Segmentation Based on Spatio-Temporal Association

  • Lim, Jun-Sik;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong;Na, In-Seop
    • International Journal of Contents
    • /
    • 제7권4호
    • /
    • pp.19-23
    • /
    • 2011
  • This paper proposes a segmentation method for overlapped vehicles based on analysis of the vehicle location and the spatiotemporal association information. This method can be used in an intelligent transport system. In the proposed method, occlusion is detected by analyzing the association information based on a vehicle's location in continuous images, and occlusion segmentation is carried out by using the vehicle information prior to occlusion. In addition, the size variations of the vehicle to which association tracking is applied can be anticipated by learning the variations according to the overlapped vehicles' movements. To assess the performance of the suggested method, image data collected from CCTVs recording traffic information is used, and average success rate of occlusion segmentation is 96.9%.

Extension of Fast Level Set Method with Relationship Matrix, Modified Chan-Vese Criterion and Noise Reduction Filter

  • Vu, Dang-Tran;Kim, Jin-Young;Choi, Seung-Ho;Na, Seung-You
    • The Journal of the Acoustical Society of Korea
    • /
    • 제28권3E호
    • /
    • pp.118-135
    • /
    • 2009
  • The level set based approach is one of active methods for contour extraction in image segmentation. Since Osher and Sethian introduced the level set framework in 1988, the method has made the great impact on image segmentation. However, there are some problems to be solved; such as multi-objects segmentation, noise filtering and much calculation amount. In this paper we address the drawbacks of the previous level set methods and propose an extension of the traditional fast level set to cope with the limitations. We introduce a relationship matrix, a new split-and-merge criterion, a modified Chan-Vese criterion and a novel filtering criterion into the traditional fast level set approach. With the segmentation experiments we evaluate the proposed method and show the promising results of the proposed method.

확장형 이동창을 이용한 지도 선형 개체의 분할 기법 연구 (Line Segmentation Method using Expansible Moving Window for Cartographic Linear Features)

  • 박우진;이재은;유기윤
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.5-6
    • /
    • 2010
  • Needs for the methodology of segmentation of linear feature according to the shape characteristics of line feature are increasing in cartographic linear generalization. In this study, the line segmentation method using expansible moving window is presented. This method analyzes the generalization effect of line simplification algorithms depend on the line characters of linear feature and extracts the sections which show exclusively low positional error due to a specific algorithm. The description measurements of these segments are calculated and the target line data are segmented based on the measurements. For segmenting the linear feature to a homogeneous section, expansible moving window is applied. This segmentation method is expected to be used in the cartographic map generalization considering the shape characteristics of linear feature.

  • PDF

자기조직화 신경망과 계층적 군집화 기법(SONN-HC)을 이용한 인터넷 뱅킹의 고객세분화 모형구축 (Customer Segmentation Model for Internet Banking using Self-organizing Neural Networks and Hierarchical Gustering Method)

  • 신택수;홍태호
    • Asia pacific journal of information systems
    • /
    • 제16권3호
    • /
    • pp.49-65
    • /
    • 2006
  • This study proposes a model for customer segmentation using the psychological characteristics of Internet banking customers. The model was developed through two phased clustering method, called SONN-HC by integrating self-organizing neural networks (SONN) and hierarchical clustering (HC) method. We applied the SONN-HC method to internet banking customer segmentation and performed an empirical analysis with 845 cases. The results of our empirical analysis show the psychological characteristics of Internet banking customers have significant differences among four clusters of the customers created by SONN-HC. From these results, we found that the psychological characteristics of Internet banking customers had an important role of planning a strategy for customer segmentation in a financial institution.

다중 모달 정합에 의한 Visible Human의 뼈 분할 방법 (Bone Segmentation Method of Visible Human using Multimodal Registration)

  • 이호;김동성;강흥식
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권7_8호
    • /
    • pp.719-726
    • /
    • 2003
  • 본 논문에서는 Visible Human 컬러 단면 영상에서 인접한 지방 영역과 색상 특성이 유사하여 구별이 매우 힘든 뼈 영역을 분할하기 위해 다중 모달 정합 방법을 제안한다. 뼈와 그 인접영역의 구별이 뚜렷한 CT 영상에서 뼈를 분할하고 두 영상의 정합을 이용하여 컬러 영상에서 최종 뼈 분할을 수행한다. CT 영상에서 뼈의 분할 방법은 임계값 기반 방법을 사용하였고, 정합은 두 영상에서 신체 부위를 임계값 기반의 방법을 사용하여 분할된 객체들의 경계를 상호 상관관계(cross-correlation)방법을 사용하여 수행하였다. 제안된 방법은 Visible Human 컬러 단면 영상 중에 뼈와 인접 지방이 유사하여 그 분할이 어려운 머리부위와 다리부위에 적용하여 고무적인 결과론 얻었다.