• Title/Summary/Keyword: segmental algorithm

Search Result 45, Processing Time 0.026 seconds

Improving the Performance of Adaptive Feedback Cancellation in Hearing Aids (보청기에서 적응궤환제거의 성능 향상)

  • Kim, Dae-Kyung;Hur, Jong;Park, Jang-Sik;Son, Kyung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.38-46
    • /
    • 1999
  • In this paper, two methods were proposed to improve the performance of adaptive feedback cancellation in hearing aids. One is “Orthogonality principle acoustic feedback cancellation method(Orthogonality principle method)” to track optimal solution with monitoring the instantaneous gradient, the other is a method using the CLMS algorithm(CLMS method). In many simulation conditions, adaptive feedback cancellation method proposed in this paper was much better than Greenberg method by Sum-method LMS algorithm which is known the most excellent method by now in case of system mismatch, SNR and segmental SMR. Also. Orthogonality principle method is as good as CLMS method in terms of adaptive feedback cancellation in many simulation conditions.

  • PDF

Vibration-based damage alarming criteria for wind turbine towers

  • Nguyen, Cong-Uy;Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.221-236
    • /
    • 2017
  • In this study, the feasibility of vibration-based damage alarming algorithms are numerically evaluated for wind turbine tower structures which are subjected to harmonic force excitation. Firstly, the algorithm of vibration-based damage alarming for the wind turbine tower (WTT) is visited. The natural frequency change, modal assurance criterion (MAC) and frequency-response-ratio assurance criterion (FRRAC) are utilized to recognize changes in dynamic characteristics due to a structural damage. Secondly, a finite element model based on a real wind turbine tower is established in a structural analysis program, Midas FEA. The harmonic force is applied at the rotor level as presence of excitation. Several structural damage scenarios are numerically simulated in segmental joints of the wind turbine model. Finally, the natural frequency change, MAC and FRRAC algorithm are employed to identify the structural damage occurred in the finite element model. The results show that these criteria could be used as promising damage existence indicators for the damage alarming in wind turbine supporting structures.

AN ALGORITHM TO REDUCE THE PITCH SEARCHING TIME USING MODIFIED DELTA SEARCH IN CELP VOCODER (개선된 델타검색기법을 이용한 피치검색시간의 단축)

  • 이주헌
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.214-217
    • /
    • 1994
  • The major drawback in the Code Excited Linear Prediction type vocoders is their large computational requirements. In this paper, a simple method is proposed to reduce the pitch searching time in the pitch filter almost without degradation of quality. On the basis of the observational regularity of the correlation function of speech, only the limited numbers of pitch lags are considered to be an optimum pitch. This is done by skipping the negative envelope side of the correlation function and limiting the maximum number of lags to be considered preliminarily. By doing so, we can reduce the computational time of pitch searching more than 51% with negligible quality degradation. In addition to that, by combining that method with the conventional delta search technique, we can reduce the computational time requirements more than 60% without serious lowering the speech quality in segmental SNR measure compared to the conventional full search method.

  • PDF

A New Stylization Method using Least-Square Error Minimization on Segmental Pitch Contour (최소 자승오차 방식을 이용한 세그먼트 피치패턴의 정형화)

  • 이정철
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.107-110
    • /
    • 1994
  • In this paper, we describe the features of the fundamental frequency contour of Korean read speech, and propose a new stylization method to characterize the Fø pattern of segments. Our algorithm consists of three stylization processes : the segment level, the syllable level, and the sord level. For stylization of Fø contour in the segment level , we applied least square error minimization method to determine Fø values at initial, medial, and final position in a segment. In the syllable level, we determine the stylized Fø pattern of a syllable using the mean Fø value of each word and style information for each word, syllable and segment, we reconstruct Fø contour of sentences. The simulation results show that the error is less than 10% of the actual Fø contour for each sentence. In perception test, there is little difference between the synthesized speech with the original difference between the synthesized speech with the original Fø contour and the synthesized speech with the stylized Fø contour.

  • PDF

Optical Skin-fat Thickness Measurement Using Miniaturized Chip LEDs: A Preliminary Human Study

  • Ho, Dong-Su;Kim, Ee-Hwa;Hwang, In-Duk;Shin, Kun-Soo;Oh, Jung-Taek;Kim, Beop-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.304-309
    • /
    • 2009
  • We tested the feasibility of measuring fat thickness using a miniaturized chip LED sensor module, testing 12 healthy female subjects. The module consisted of a single detector and four sources at four different source-detector distances (SD). A segmental curve-fitting procedure was applied, using an empirical algorithm obtained by Monte-Carlo simulation, and fat thicknesses were estimated. These thicknesses were compared to computed-tomography (CT) results; the correlation coefficient between CT and optical measurements was 0.932 for bicep sites. The mean percentage error between the two measurements was 13.12%. We conclude that fat thickness can be efficiently measured using the simple sensor module.

Augmentation of Hidden Markov Chain for Complex Sequential Data in Context

  • Sin, Bong-Kee
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.31-34
    • /
    • 2021
  • The classical HMM is defined by a parameter triple �� = (��, A, B), where each parameter represents a collection of probability distributions: initial state, state transition and output distributions in order. This paper proposes a new stationary parameter e = (e1, e2, …, eN) where N is the number of states and et = P(|xt = i, y) for describing how an input pattern y ends in state xt = i at time t followed by nothing. It is often said that all is well that ends well. We argue here that all should end well. The paper sets the framework for the theory and presents an efficient inference and training algorithms based on dynamic programming and expectation-maximization. The proposed model is applicable to analyzing any sequential data with two or more finite segmental patterns are concatenated, each forming a context to its neighbors. Experiments on online Hangul handwriting characters have proven the effect of the proposed augmentation in terms of highly intuitive segmentation as well as recognition performance and 13.2% error rate reduction.

Beyond BI-RADS: Nonmass Abnormalities on Breast Ultrasound

  • Hiroko Tsunoda;Woo Kyung Moon
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.134-145
    • /
    • 2024
  • Abnormalities on breast ultrasound (US) images which do not meet the criteria for masses are referred to as nonmass lesions. These features and outcomes have been investigated in several studies conducted by Asian researchers. However, the term "nonmass" is not included in the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) 5th edition for US. According to the Japan Association of Breast and Thyroid Sonology guidelines, breast lesions are divided into mass and nonmass. US findings of nonmass abnormalities are classified into five subtypes: abnormalities of the ducts, hypoechoic areas in the mammary glands, architectural distortion, multiple small cysts, and echogenic foci without a hypoechoic area. These findings can be benign or malignant; however, focal or segmental distributions and presence of calcifications suggest malignancy. Intraductal, invasive ductal, and lobular carcinomas can present as nonmass abnormalities. For the nonmass concept to be included in the next BI-RADS and be widely accepted in clinical practice, standardized terminologies, an interpretation algorithm, and outcome-based evidence are required for both screening and diagnostic US.

Optimization of Gaussian Mixture in CDHMM Training for Improved Speech Recognition

  • Lee, Seo-Gu;Kim, Sung-Gil;Kang, Sun-Mee;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.7-21
    • /
    • 1999
  • This paper proposes an improved training procedure in speech recognition based on the continuous density of the Hidden Markov Model (CDHMM). Of the three parameters (initial state distribution probability, state transition probability, output probability density function (p.d.f.) of state) governing the CDHMM model, we focus on the third parameter and propose an efficient algorithm that determines the p.d.f. of each state. It is known that the resulting CDHMM model converges to a local maximum point of parameter estimation via the iterative Expectation Maximization procedure. Specifically, we propose two independent algorithms that can be embedded in the segmental K -means training procedure by replacing relevant key steps; the adaptation of the number of mixture Gaussian p.d.f. and the initialization using the CDHMM parameters previously estimated. The proposed adaptation algorithm searches for the optimal number of mixture Gaussian humps to ensure that the p.d.f. is consistently re-estimated, enabling the model to converge toward the global maximum point. By applying an appropriate threshold value, which measures the amount of collective changes of weighted variances, the optimized number of mixture Gaussian branch is determined. The initialization algorithm essentially exploits the CDHMM parameters previously estimated and uses them as the basis for the current initial segmentation subroutine. It captures the trend of previous training history whereas the uniform segmentation decimates it. The recognition performance of the proposed adaptation procedures along with the suggested initialization is verified to be always better than that of existing training procedure using fixed number of mixture Gaussian p.d.f.

  • PDF

Research on the cable-driven endoscopic manipulator for fusion reactors

  • Guodong Qin;Yong Cheng;Aihong Ji;Hongtao Pan;Yang Yang;Zhixin Yao;Yuntao Song
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.498-505
    • /
    • 2024
  • In this paper, a cable-driven endoscopic manipulator (CEM) is designed for the Chinese latest compact fusion reactor. The whole CEM arm is more than 3000 mm long and includes end vision tools, an endoscopic manipulator/control system, a feeding system, a drag chain system, support systems, a neutron shield door, etc. It can cover a range of ±45° of the vacuum chamber by working in a wrap-around mode, etc., to meet the need for observation at any position and angle. By placing all drive motors in the end drive box via a cable drive, cooling, and radiation protection of the entire robot can be facilitated. To address the CEM motion control problem, a discrete trajectory tracking method is proposed. By restricting each joint of the CEM to the target curve through segmental fitting, the trajectory tracking control is completed. To avoid the joint rotation angle overrun, a joint limit rotation angle optimization method is proposed based on the equivalent rod length principle. Finally, the CEM simulation system is established. The rationality of the structure design and the effectiveness of the motion control algorithm are verified by the simulation.

Audio Quality Enhancement at a Low-bit Rate Perceptual Audio Coding (저비트율로 압축된 오디오의 음질 개선 방법)

  • 서정일;서진수;홍진우;강경옥
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.566-575
    • /
    • 2002
  • Low-titrate audio coding enables a number of Internet and mobile multimedia streaming service more efficiently. For the help of next-generation mobile telephone technologies and digital audio/video compression algorithm, we can enjoy the real-time multimedia contents on our mobile devices (cellular phone, PDA notebook, etc). But the limited available bandwidth of mobile communication network prohibits transmitting high-qualify AV contents. In addition, most bandwidth is assigned to transmit video contents. In this paper, we design a novel and simple method for reproducing high frequency components. The spectrum of high frequency components, which are lost by down-sampling, are modeled by the energy rate with low frequency band in Bark scale, and these values are multiplexed with conventional coded bitstream. At the decoder side, the high frequency components are reconstructed by duplicating with low frequency band spectrum at a rate of decoded energy rates. As a result of segmental SNR and MOS test, we convinced that our proposed method enhances the subjective sound quality only 10%∼20% additional bits. In addition, this proposed method can apply all kinds of frequency domain audio compression algorithms, such as MPEG-1/2, AAC, AC-3, and etc.