DOI QR코드

DOI QR Code

Beyond BI-RADS: Nonmass Abnormalities on Breast Ultrasound

  • Hiroko Tsunoda (Department of Radiology, St. Luke's International Hospital) ;
  • Woo Kyung Moon (Department of Radiology, Seoul National University Hospital)
  • Received : 2023.08.16
  • Accepted : 2023.11.14
  • Published : 2024.02.01

Abstract

Abnormalities on breast ultrasound (US) images which do not meet the criteria for masses are referred to as nonmass lesions. These features and outcomes have been investigated in several studies conducted by Asian researchers. However, the term "nonmass" is not included in the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) 5th edition for US. According to the Japan Association of Breast and Thyroid Sonology guidelines, breast lesions are divided into mass and nonmass. US findings of nonmass abnormalities are classified into five subtypes: abnormalities of the ducts, hypoechoic areas in the mammary glands, architectural distortion, multiple small cysts, and echogenic foci without a hypoechoic area. These findings can be benign or malignant; however, focal or segmental distributions and presence of calcifications suggest malignancy. Intraductal, invasive ductal, and lobular carcinomas can present as nonmass abnormalities. For the nonmass concept to be included in the next BI-RADS and be widely accepted in clinical practice, standardized terminologies, an interpretation algorithm, and outcome-based evidence are required for both screening and diagnostic US.

Keywords

Acknowledgement

The authors thank Dr. Naoki Kanomata, Department of pathology of St. Luke's International Hospital and Dr. Han Suk Ryu, Department of pathology of Seoul National University Hospital for histological images related to this work.

References

  1. Mendelson EB, Bohm-Velez M, Berg WA, Whitman GJ, Feldman MI, Madjar H, et al. ACR BI-RADS® ultrasound. In: American College of Radiology. ACR BI-RADS® atlas, breast imaging reporting and data system. 5th ed. Reston, VA: American College of Radiology, 2013:41-102 
  2. Uematsu T. Non-mass-like lesions on breast ultrasonography: a systematic review. Breast Cancer 2012;19:295-301 
  3. Giess CS, Chesebro AL, Chikarmane SA. Ultrasound features of mammographic developing asymmetries and correlation with histopathologic findings. AJR Am J Roentgenol 2018;210:W29-W38 
  4. Choe J, Chikarmane SA, Giess CS. Nonmass findings at breast US: definition, classifications, and differential diagnosis. Radiographics 2020;40:326-335 
  5. Lee J, Lee JH, Baik S, Cho E, Kim DW, Kwon HJ, et al. Non-mass lesions on screening breast ultrasound. Med Ultrason 2016;18:446-451 
  6. Kim SJ, Park YM, Jung HK. Nonmasslike lesions on breast sonography: comparison between benign and malignant lesions. J Ultrasound Med 2014;33:421-430 
  7. Park JW, Ko KH, Kim EK, Kuzmiak CM, Jung HK. Non-mass breast lesions on ultrasound: final outcomes and predictors of malignancy. Acta Radiol 2017;58:1054-1060 
  8. Park KW, Park S, Shon I, Kim MJ, Han BK, Ko EY, et al. Non-mass lesions detected by breast US: stratification of cancer risk for clinical management. Eur Radiol 2021;31:1693-1706 
  9. Ko KH, Jung HK, Kim SJ, Kim H, Yoon JH. Potential role of shear-wave ultrasound elastography for the differential diagnosis of breast non-mass lesions: preliminary report. Eur Radiol 2014;24:305-311 
  10. Ko KH, Hsu HH, Yu JC, Peng YJ, Tung HJ, Chu CM, et al. Non-mass-like breast lesions at ultrasonography: feature analysis and BI-RADS assessment. Eur J Radiol 2015;84:77-85 
  11. Wang ZL, Li N, Li M, Wan WB. Non-mass-like lesions on breast ultrasound: classification and correlation with histology. Radiol Med 2015;120:905-910 
  12. Ueno E, Tohno E, Itoh K. [Classification and diagnostic criteria in breast echography]. Jpn J Med Ultrasonics 1986;13:19-31. Japanese 
  13. Japan Association of Breast and Thyroid Sonology. [Guideline for breast ultrasound: management and diagnosis]. Tokyo: Nankodo, 2004. Japanese 
  14. Japan Association of Breast and Thyroid Sonology. [Guideline for breast ultrasound: management and diagnosis]. 4th ed. Tokyo: Nankodo, 2020. Japanese 
  15. Ito T, Ueno E, Endo T, Omoto K, Kuwajima A, Taniguchi N, et al. The Japan Society of Ultrasonics in Medicine guidelines on non-mass abnormalities of the breast. J Med Ultrason 2023;50:331-339 
  16. Wellings SR, Jensen HM, Marcum RG. An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 1975;55:231-273 
  17. Milanese TR, Hartmann LC, Sellers TA, Frost MH, Vierkant RA, Maloney SD, et al. Age-related lobular involution and risk of breast cancer. J Natl Cancer Inst 2006;98:1600-1607 
  18. Izumori A, Horii R, Akiyama F, Iwase T. Proposal of a novel method for observing the breast by high-resolution ultrasound imaging: understanding the normal breast structure and its application in an observational method for detecting deviations. Breast Cancer 2013;20:83-91 
  19. Uematsu T, Izumori A, Moon WK. Overcoming the limitations of screening mammography in Japan and Korea: a paradigm shift to personalized breast cancer screening based on ultrasonography. Ultrasonography 2023;42:508-517 
  20. Lee SH, Ryu HS, Jang MJ, Yi A, Ha SM, Kim SY, et al. Glandular tissue component and breast cancer risk in mammographically dense breasts at screening breast US. Radiology 2021;301:57-65 
  21. Lee SH, Moon WK. Glandular tissue component on breast ultrasound in dense breasts: a new imaging biomarker for breast cancer risk. Korean J Radiol 2022;23:574-580 
  22. Acciavatti RJ, Lee SH, Reig B, Moy L, Conant EF, Kontos D, et al. Beyond breast density: risk measures for breast cancer in multiple imaging modalities. Radiology 2023;306:e222575 
  23. DeMartini WB, Destounis SV, Eby PR, Leung JWT. BI-RADS update: the edition formerly known as fifth. Proceedings of the 2023 SBI Breast Imaging Symposium; 2023 May 4-7; National Harbor, MD, USA: Society of Breast Imaging; 2023. p.9 
  24. Choi JS, Tsunoda H, Moon WK. Nonmass lesions on breast ultrasound: an international perspective on clinical use and outcomes. J Breast Imaging 2023 Oct 27. [Epub]. https://doi.org/10.1093/jbi/wbad077 
  25. Leung JWT. Nonmass descriptor at breast US to expand clinical utility. J Breast Imaging 2023 Dec 27. [Epub]. https://doi.org/10.1093/jbi/wbad095 
  26. Watanabe T, Yamaguchi T, Tsunoda H, Kaoku S, Tohno E, Yasuda H, et al. Ultrasound image classification of ductal carcinoma in situ (DCIS) of the breast: analysis of 705 DCIS lesions. Ultrasound Med Biol 2017;43:918-925 
  27. Hsu HH, Yu JC, Hsu GC, Chang WC, Yu CP, Tung HJ, et al. Ultrasonographic alterations associated with the dilatation of mammary ducts: feature analysis and BI-RADS assessment. Eur Radiol 2010;20:293-302 
  28. Sabatier R, Sabiani L, Zemmour C, Taix S, Chereau E, Goncalves A, et al. Invasive ductal breast carcinoma with predominant intraductal component: clinicopathological features and prognosis. Breast 2016;27:8-14 
  29. Ban K, Tsunoda H, Watanabe T, Kaoku S, Yamaguchi T, Ueno E, et al. Characteristics of ultrasonographic images of ductal carcinoma in situ with abnormalities of the ducts. J Med Ultrason 2020;47:107-115 
  30. Selinko VL, Middleton LP, Dempsey PJ. Role of sonography in diagnosing and staging invasive lobular carcinoma. J Clin Ultrasound 2004;32:323-332 
  31. Sotome K, Yamamoto Y, Hirano A, Takahara T, Hasegawa S, Nakamaru M, et al. The role of contrast enhanced MRI in the diagnosis of non-mass image-forming lesions on breast ultrasonography. Breast Cancer 2007;14:371-380 
  32. Jones KN, Magut M, Henrichsen TL, Boughey JC, Reynolds C, Glazebrook KN. Pure lobular carcinoma of the breast presenting as a hyperechoic mass: incidence and imaging characteristics. AJR Am J Roentgenol 2013;201:W765-W769 
  33. Moon WK, Myung JS, Lee YJ, Park IA, Noh DY, Im JG. US of ductal carcinoma in situ. Radiographics 2002;22:269-280 
  34. Scoggins ME, Fox PS, Kuerer HM, Rauch GM, Benveniste AP, Park YM, et al. Correlation between sonographic findings and clinicopathologic and biologic features of pure ductal carcinoma in situ in 691 patients. AJR Am J Roentgenol 2015;204:878-888 
  35. Guo W, Wang T, Li F, Jia C, Zheng S, Zhang X, et al. Non-mass breast lesions: could multimodal ultrasound imaging be helpful for their diagnosis? Diagnostics (Basel) 2022;12:2923 
  36. Ko ES, Han H, Lee BH, Choe DH. Sonographic changes after removing all benign breast masses with sonographically guided vacuum-assisted biopsy. Acta Radiol 2009;50:968-974 
  37. Seymour MT, Moskovic EC, Walsh G, Trott P, Smith IE. Ultrasound assessment of residual abnormalities following primary chemotherapy for breast cancer. Br J Cancer 1997;76:371-376 
  38. Lee E, Wylie E, Metcalf C. Ultrasound imaging features of radial scars of the breast. Australas Radiol 2007;51:240-245 
  39. Soo MS, Kornguth PJ, Hertzberg BS. Fat necrosis in the breast: sonographic features. Radiology 1998;206:261-269 
  40. Lee JH, Oh KK, Kim EK, Kwack KS, Jung WH, Lee HK. Radiologic and clinical features of idiopathic granulomatous lobular mastitis mimicking advanced breast cancer. Yonsei Med J 2006;47:78-84 
  41. Takei J, Tsunoda-Shimizu H, Kikuchi M, Kawasaki T, Yagata H, Tsugawa K, et al. Clinical implications of architectural distortion visualized by breast ultrasonography. Breast Cancer 2009;16:132-135 
  42. Yang WT, Tse GM. Sonographic, mammographic, and histopathologic correlation of symptomatic ductal carcinoma in situ. AJR Am J Roentgenol 2004;182:101-110 
  43. Sekine K, Tsunoda-Shimizu H, Kikuchi M, Saida Y, Kawasaki T, Suzuki K. DCIS showing architectural distortion on the screening mammogram - comparison of mammographic and pathological findings. Breast Cancer 2007;14:281-284 
  44. Yoshida A, Hayashi N, Akiyama F, Yamauchi H, Uruno T, Kikuchi M, et al. Ductal carcinoma in situ that involves sclerosing adenosis: high frequency of bilateral breast cancer occurrence. Clin Breast Cancer 2012;12:398-403 
  45. Oiwa M, Endo T, Ichihara S, Moritani S, Hasegawa M, Iwakoshi A, et al. Sclerosing adenosis as a predictor of breast cancer bilaterality and multicentricity. Virchows Arch 2015;467:71-78 
  46. Wong HN, Tsunoda H, Matsuda N, Suzuki K, Li CP, Fok EWS, et al. Sclerosing adenosis: should we still regard it as a simple benign disease? Report of two patients with subsequent development of invasive or in-situ breast cancer. Hong Kong J Radiol 2014;17:49-56 
  47. Usami Y, Tsunoda H, Kajiura Y, Kawauchi N, Kikuchi M, Honda S, et al. [Ultrasonographic evaluation of multiple cystic lesions in breast sonography]. Jpn J Med Ultrasonics 2011;38:455-460. Japanese 
  48. Kim SM, Kim HH, Kang DK, Shin HJ, Cho N, Park JM, et al. Mucocele-like tumors of the breast as cystic lesions: sonographic-pathologic correlation. AJR Am J Roentgenol 2011;196:1424-1430 
  49. Tanaka A, Imai A, Goto M, Konishi E, Shinkura N. Which patients require or can skip biopsy for breast clustered microcysts? Predictive findings of breast cancer and mucocele-like tumor. Breast Cancer 2016;23:590-596 
  50. Terminology and Diagnostic Criteria Committee, Japan Society of Ultrasonics in Medicine. Recall criteria for ultrasound breast cancer screening. J Med Ultrason 2016;43:301-313 
  51. Berg WA, Campassi CI, Ioffe OB. Cystic lesions of the breast: sonographic-pathologic correlation. Radiology 2003;227:183-191 
  52. Moon WK, Im JG, Koh YH, Noh DY, Park IA. US of mammographically detected clustered microcalcifications. Radiology 2000;217:849-854 
  53. Cheung YC, Wan YL, Chen SC, Lui KW, Ng SH, Yeow KM, et al. Sonographic evaluation of mammographically detected microcalcifications without a mass prior to stereotactic core needle biopsy. J Clin Ultrasound 2002;30:323-331 
  54. Yao JJ, Zhan WW, Chen M, Zhang XX, Zhu Y, Fei XC, et al. Sonographic features of ductal carcinoma in situ of the breast with microinvasion: correlation with clinicopathologic findings and biomarkers. J Ultrasound Med 2015;34:1761-1768 
  55. Yoshida Y, Tsunoda H, Tsurugi S, Uzawa I, Yagishita K, Kanomata N. [Do all intraductal lesions identified during breast ultrasound screening require further examination?] J Jpn Assoc Breast Cancer Screen 2022;31:203-210. Japanese 
  56. Hong S, Li W, Gao W, Liu M, Song D, Dong Y, et al. Diagnostic performance of elastography for breast non-mass lesions: a systematic review and meta-analysis. Eur J Radiol 2021;144:109991 
  57. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology 2006;239:341-350 
  58. Cho N, Moon WK, Park JS. Real-time US elastography in the differentiation of suspicious microcalcifications on mammography. Eur Radiol 2009;19:1621-1628 
  59. Lee SH, Chang JM, Cho N, Koo HR, Yi A, Kim SJ, et al. Practice guideline for the performance of breast ultrasound elastography. Ultrasonography 2014;33:3-10