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ABSTRACT

This paper proposes an improved training procedure in speech recognition based on
the continuous density of the Hidden Markov Model (CDHMM). Of the three
parameters (initial state distribution probability, state transition probability, output
probability density function (p.df.) of state) governing the CDHMM model, we focus
on the third parameter and propose an efficient algorithm that determines the p.df. of
each state. It is known that the resulting CDHMM model converges to a local
maximum point of parameter estimation via the iterative Expectation Maximization
procedure. Specifically, we propose two independent algorithms that can be embedded
in the segmental K-means training procedure by replacing relevant key steps; the
adaptation of the number of mixture Gaussian p.df. and the initialization using the
CDHMM parameters previously estimated. The proposed adaptation algorithm searches
for the optimal number of mixture Gaussian humps to ensure that the p.df. is
consistently re-estimated, enabling the model to converge toward the global maximum
point. By applying an appropriate threshold value, which measures the amount of
collective changes of weighted variances, the optimized number of mixture Gaussian
branch is determined. The initialization algorithm essentially exploits the CDHMM
parameters previously estimated and uses them as the basis for the current initial
segmentation subroutine. It captures the trend of previous training history whereas the
uniform segmentation decimates it. The recognition performance of the proposed
adaptation procedures along with the suggested initialization is verified to be always
better than that of existing training procedure using fixed number of mixture Gaussian
pdf.
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1. INTRODUCTION

Hidden Markov Models (HMMs) have been demonstrated as one of the most
powerful statistical tools available for automatic speech recognition [1]. The
characteristic parameters of the employed Markov process model is usually estimated
by the maximum likelihood (ML) method, which presumes that the amount of training
data is large enough to provide accurate estimates [2]){3]. HMMs can be based on
either discrete output probability distributions (e.g., discrete HMM) or continuous
output probability density functions (e.g., semi-continuous density HMM (SCDHMM)
or CDHMM).

In the discrete HMM, the discrete probability distributions are sufficiently powerful
to model any random events with a reasonable number of parameters. The major
problem of the discrete output probability is that the vector quantization partitions the
acoustic feature into separate regions through some distortion measure. This raises a
problem in that the partition operations may destroy the original signal structure.
Many studies indicate that the recognition accuracy for discrete HMM is indeed lower
than that of the CDHMM [4][5][6]. To overcome this limitation, either the SCDHMM
or .the- CDHMM can be chosen as the candidate for investigation. In the HMMs of
continuous output probability density functions, the parameter estimation of speech
model is usually based on the ML methods on the assumption that observed signal is
generated by a mixture Gaussian process [7]. Continuous density HMM captures the
essence of feature vectors accurately and has the interpolating ability in spectral
modeling while providing flexibility.

In the HMM-based parameter estimations for speech recognition, modeling the
variation of spectral characteristics in speech sighal is a crucial problem. There are
many known factors contributing to increase in the varidation. Context phonemes
surrounding a center phoneme, speaker identity, speaking rate, signal powér, accent
and background noise, are some of the examples among them. In HMM, output
distributions model the various spectral characteristics in each state.

In this paper, an effective estimation method of each states output p.d.f. ié
proposed. The output p.df. is an essential parameter in CDHMM which can
significantly affect the recognition performance. Our aim is to improve the acoustic
modeling in HMM in two aspects. First, in the modeling process, more tangible efforts
should be made to take into account the different spectral characteristic of each HMM
state. Second, in the initialization process, more effective estimates are helpful in
discrete symbol cases are essential in continuous distribution cases.

As solution to the above two problerhs, we propose an efficient adaptation of the

number of mixture Gaussian p.d.f., and an effective initialization using the CDHMM
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parameters previously estimated, respectively. Section 3 describes these two algorithms
in detail. Both approaches collectively provide an effective ML, estimation of CDHMM
by incorporating the spectral characteristics of each state. They are embedded into the
segmental K-means training procedure, which is widely used for parameter estimation
of CDHMM, and the recognition performance is evaluated.

The remainder of this paper is organized as follows. In Section 2, we present the
conventional re-estimation algoﬁthm of continuous density HMM. In Section 3, we
discuss the estimation method using variable number of mixture Gaussian p.d.f. and
suggest an effective initialization algorithm. We then apply the algorithm to Korean
isolated word database for automated voice dialing system (VDS). The experiment
arrangements and the recognition results are discussed in Section 4. Finally, we

summarize our findings in Section 5.

2. RE-ESTIMATION ALGORITHM OF CONTINUOUS DENSITY HMM

The most difficult problem of HMMSs is to determine an effective method that
adjusts the model parameters A=(A,B,n) to satisfy a certain optimization criterion.
There is no known way to analytically solve for the model parameter set that
maximizes the probability of the observation sequence in a close form [9]. The two
well-known iterative techniques used to estimate the model parameters in CDHMM
are the Baum-Welch algorithm and segmental K-means algorithm respectively. In this

section, we discuss the two algorithms to formulate the problem to be pursued.

2.1. Baum-Welch reestimation method

Baum and his colleagues have determined that either (1) the initial model A defines
a ciritical point of the likelihood function, in which case _/1'=A‘; or (2) model 2 is
more likely than model A in the sense that P(O| D>P( 0| A) ; such that a new
model A, from which the observation sequence is more likely, is produced. Based on
this premise, if we use A in place of A and repeat the reestimation calculation, we

can improve the probability of O being observed from the model until some training
point is reached. The final result of the reestimation procedure is the MIL estimate of
the HMM.

The reestimation formulas can be derived directly by maximizing Baum’s auxiliary

function,

Q(A',A)=Zq:P( 0, gl NogP( O, gl A 1)



10 Speech Sciences Vol.5. No.1. (April 1999)

over A, because

QL ,DzQ, ) > (O H=P(0| X) (2)

We can maximize the fumction €A,4) over A to improve A in the sense of

increasing the likelihood P(O| 4). Eventually the likelihood function converges to a
local maximum point if we iterate the procedure [9].

2.2. Segmental K-means reestimation method

An alternative way to train the HMM parameters by the ML criterion is the
segmental K-means algorithm [10]. The segmental K-means algorithm is a procedure
for estimating the HMM parameters by embedding the K-means method into a
Markov chain. The segmentation information can be obtained from the Viterbi
decoding procedure [11]. Contrary to Baum's algorithm, the segmental K-means
algorithm provides an estimate, which locally maximizes the joint likelihood of the
observation sequence and the most likely state sequence. Instead of likelihood function

PO|4A), max , (O, s| A) is used as the optimization objective. The motivation for
using max , P(O, s| A) as the optimization criterion is reasonable [6][12]. It was
found that the likelihood values associated with the parameter sets estimated by the
two algorithms are very close and, futhermore, the estimated parameter sets
themselves are similar [13]. It is known that both algorithms converge to local
maximum points. We employ the segmental K-means algqn'thm because it can be
implemented simply by segmenting and clustering speech signals, and can avoid the
numerical difficulties associated with Baum’s algorithm.

In the segmental K-means algorithm, model parameters are estimated to maximize
joint probability for observing the sequence O along with the most likely state
sequernce s.

A= arg max ;[ max O, s | A)] 3)

To accomplish this objective, the EM algorithm is used in two steps. In the first
step, the optimal state sequence that maximizes the probability of the ohservation

sequence of model A is obtained.
“s=arg max ,P( O, s| A) 4)

Then, based on the state sequence s, a new model An+; 1S estimated by
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A =argmax (0, s| A 5)

3. ESTIMATION USING VARIABLE NUMBER OF MIXTURE GAUSSIAN
P.D.F. AND SUGGESTED INITIALIZATION

In this section, we formulate the use of variable number of mixture Gaussian p.d.f.
for the estimation of CDHMM parameters.

When we consider the sequence of feature vectors, we expect that certain portions
of a speech utterance are often more useful in classifying the utterance than other
portions. In other words, certain portions of a speech utterance have more
distinguishing features than other portions. Therefore, the performance of the
recognizer is expected to be improved by imposing appropriate weighfs to the HMM
states proportional to their utterance characterizing values [8];' There have been many
attempts to show that the score of a speech utterancé through a valid state sequence
is a weighted sum of HMM log state-likelihood through the state sequence [14]. The
state-weighting approaches, on the other hand, involve many complex procedures and
intractable mathematical equations. ‘

This paper proposes a simpler approach by focusing on the variable number of
mixture Gaussian p.d.f. of each state and its optimization, instead of state-weights, to
reflect upon the characteristics of each state and the variety of speech utterances.
Usually the number of mixture components for each state is constant throughout all
the states. Since such a scheme ignores the characteristics of each state, it results in
a coarse modeling of speech signal. To model speech signal as accurately as possible,
we propose to direct a distinctive number of mixture components for each state.

“There can be many criteria that establish the optimal number of mixture Gaussian
p.d.f in each state. We use one component of the HMM parameters. Among the HMM
parameters A=(A, B,n), we choose the use B;=(m;, Zim, Cs) as the criterion in state

s;. In particular, the parameter X, can be considered as a performance measure of

the estimation efficiency. It is reasonable to propose that the p.df. of large value X
must have more mixture branches than that of small value 2.

Two forms of the X matrices can be considered; namely, the diagonal matrices
(with assumed zero correlation between components of the representation), and full
covariance matrices. The advantage of the diagonal covariance matrix is that the

computation of b, 0) reduces to a simple sum of products of Gaussians, whereas for

a full covariance matrix, the computation b{ 0) requires a matrix multiplication. On

the other hand, the disadvantage of the diagonal covariance matrix representation is
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that, in general, for correlated vector components, a larger value of M (the number of
mixtures) is needed to establish an adequate model than for a full covariance matrix
representation [4). This paper chooses to employ the diagonal matrix. The determinant

of my diagonal matrix in state j is

D= 11 2B ®)

where p is the dimension of speech feature vector.
We can consider that the determinant Dj, is a measure of dispersion about I,

Because of the multiple Gaussian humps in a mixture Gaussian density, the dispersion
criterion on state i can be considered as a collection of weighted sum of the

determinants:

CRITERION= ﬁ";lc,.,,,D,.m @

m=

This way, we also can regulate the number of mixture using the change of
CRITERION. v

In a typical training procedure, there is one outstanding problem we all encounter.
In theory, the reestimation algorithm can guarantee that the HMM parameters
correspond only to the local maximum of likelihood function. Finding the optimal initial
estimate of the HMM parameters makes it possible that the local maximum is the
global maximum .of the likelihood function. Basically there is no simple or
straightforward answer [9].

The initialization algorithm that uses uniform segmentation is the simplest method.
To improve the recognition performance, we can consider first each speech feature
vector as a possible target for improvement. For example, we can calculate the
distance between contiguous frames and use this information as the segmentation
criterion for initialization. But such an initialization approach is complex and
independent of training parameters. Instead, we propose an initialization procedure that
utilizes the CDHMM parameters previously estimated. Subsection 3.2 shows this
procedure in detail. It is embedded in the segmental K-means training algorithm for
measuring its effectiveness. It is a convenient method that makes it unnecessary to

consider each speech feature vector.

3.1. Finding the optimal number of mixture Gaussian p.d.f.
The proposed algorithm follows the steps outlined belo_w. First, the number of
mixtures in each state (m) is selected. We apply the segmental K-means training
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algorithm and compute the CRITERION. This procedure is repeated after increase of

m until the all convergence conditions of each state are satisfied.

»  Stepl : Initialization
Linearly segment all training vectors into phoneme
or word units and HMM states. By clustering, the
parameters a; and (Y, Dim, Ci) are initialized.

« Step2 : Segmentation
The CDHMM parameters estimated in Step 1 or Step 3
are used to (re)segment each training utterance into
phoneme units and the HMM states via Viterbi decoding.
The transition probabilities are obtained using
the segmentation information from Viterbi decoding.
That is

__ nis) ®

a.._
b1 @nik(st)
where s* is the most likely state sequence and nis")

denotes the count of transition from state s; to state s; for s*.
. Step 3 : Clustering and Estimation

All the observatioﬁ vectors corresponding to a partial

state of each phoneme model are partitioned into M

clusters using the standard vector quantization (VQ)

design method, and the parameters (Ziy, Zim. Cim)

are estimated for each cluster m (M=m=1) in state s;

as
-1
Him = L., O,GZV;_ 0, )]
-1 — . — )T
Zim— Lim O,EZV-.( Ol ﬂzm)( Ot #mz) (10)
o= — an
L;

where V,, denotes a set of vectors that have been
partitioned to the my, mixture of states; and L,
denotes the number of members in V,, Figure 1 shows

this step.
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Figure 1. An example of clustering and estimation using feature vectors

2~-dimension
. Step 4 : Decision

Compute D;,= JZIIZ‘;,,,(k) at each state and mixture

And then, compute CRITERION= ﬁlc;,,,D,-,,,

m=

if CRITERION converges, m is fixed

or else m increases

. Step 5 : Repetition
Steps I- 4 are repeated until all of the

convergence conditions are satisfied.

3.2. Initialization algorithm using the CDHMM parameters previously estimated

The initialization procedure we propose is based on the parameter-dependent
segmentation instead of uniform segmentation. This procedure can be implemented by
modifying Step 1 and Step 4 of the proposed algorithm in subsection 3.1. To avoid
the error from poorly estimated parameters arising from small m, m is set to a large

number initially. In this procedure, the change of m is in a decreasing order as



Optimization of Gaussian Mixture in CDHMM Training for Improved Speech Recognition 15

opposed to the increasing order as represented in subsection 3.1.

*  Step 1 : Initialization
Segment all training vectors into the HMM states using
the CDHMM parameters previously estimated.
By clustering, the parameters a; and (g, Zim, cim) are

initialized.

. Step 4 : Decision

Compute Dj,= LiIE,-m(k) at each state and mixture.

And then compute CRITERION= mﬁlc,-,,,D;,,,

If CRITERION converges, m is fixed
else m decreases and the current parameters

are stored.
4. EXPERIMENTAL RESULTS

To study the effect of the proposed method, various experiments are conducted. An
isolated word recognition system that recognizes 50 Korean words is implemented for
experiments. The baseline system (Figure 2) consists of Feature Extraction, Training
and Recognition using the Hidden Markov Model (HMM).

HMM ... - Reference

Training E
Unknown
Word : 4 R ized
——w»= Feature Extraction HMM Recognition ecognize

Word

Figure 3. Baseline Speech Recognition System

In the front end, a feature extraction algorithm is applied to speech sampled at 8 kHz
and produces coefficient in spectral domain, i.e. cepstral vectors. In addition to static
information provided by the cepstral vectors, many systems typically use dynamic
information represented by differences of the cepstral vectors. These feature vectors
are -

« 12 static cepstral coefficients,



16 Speech Sciences Vol.5. No.l. (April 1999)

+ 12 1** order differential cepstral coefficients,
- 12 2" order differential cepstral coefficients,
+ 1* order and 2™ order differences of the log power,

Differences of cepstral vectors are given by :

glk(cﬁk_ Ct—k)
t=
2 ﬁ )z

=1

d (12)

where ¢, is cepstral vectors and d, is its difference at frame ¢ [15).

Only 12 static cepstral coefficients are used in the experiment for convenience.

The baseline system is an isolated word recognizer. It is designed to recognize 50
Korean words. Each word is modeled by a CDHMM with a 5-state left-right model
(Figure 3) [4].

Figure 3. Left-right HMM.

Our training and recognition tests are performed using the database for the Voice
Dialing System (VDS). Collected via telephone line, the database is sampled at 8 kHz
and band-limited to the frequency range from 300 to 3,400 Hz. The databasev consists
of 13 male speakers in their twenties. The speakers have pronounced each word five
times. Among the database, 2,495 words from 10 speakers are used for training and

749 words from 3 speakers are used for recognition testing.

4.1. Comparison of variable branch with fixed branch

The proposed method is compared with the algorithm that has fixed number of
mixture. In the performance test, we've observed the recognition rate of a test word
using topsl, tops2 and tops3. Topsl represents the matching score with the most
likely candidate while tops2 represents the matching score up to the 2nd most likely
candidate. And tops3 represents the matching score up to the 3rd most likely

candidate.
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First, Figures 4, 5 6 show the convergence of CRITERION as iteration number
increases. We can regulate the number of mixture using the change of CRITERION;

CRITERION = flcimDim 13)

m=

The CRITERION is reduced as the iteration number increases. This way, we can
limit the mixture number when the CRITERION f{falls below the threshold. Table I
shows a comparison of the proposed training method applying the variable branch with
the method of fixed branch when training iteration was performed five times. The
threshold value is 0.006#10°. The average number of variable mixture density is
found to be 5.41. It is noted that the performance with variable number of Gaussian
mixture components is better than that of using the fixed number of Gaussian

distributions.

Figure 4. Example of convergence test (model 1)

A comparison in terms of noisy speech shows a negative effect. Table II shows the
proposed training method applied variable branch with the method of fixed branch
when SNR is 10 dB.
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Figure 6. Example of convergence test (model 3)
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Table 1. Recognition rates with respect to training method. Iter=5

Training method Variable branch (5.41) |Fixed branch (6)
Recognition topl 95.59 © 9519
Rate top2 98.80 98.26
% top3 99.47 99.47

Table II. Recognition rates with respect to tfajning method. SNR=10dB, Iter=5

Training method Variable branch (5.41) | Fixed branch (6)
Recognition topl 74.37 76.50
Rate top2 -85.58 36.87
% top3 89.85 90.65

4.2. Results of initialization based on the CDHMM parameters previously estimated V

Table III shows recognidbn rates based on init_ialization ' using the CDHMM

parameters estimated in previous training procedure versus initialization by uniform

segmentation. The results show that the initialization procedire using proposed

algorithm is better than the conventional method.

Table III. Recognition rates of initialization using parameters previously . estimated.

Iter=5.
Training method Initialization using proposed algorithm |Unifrom initialization
Recognition topl 95.99 95.59
Rate top2 98.93 98.80
% top3 99.60 99.47

5. CONCLUSION

In this paper, we propose an improved training procedure in speech recognition
based on continuous density Hidden Markov Model (CDHMM). The algorithm can be
embedded in the segmental k-means- training algorithm by replacing the appropriate
steps. .

The local maximum of parameter estimation is efficiently attained -by the two
proposed procedures, the adaptation of the number of mixture Gaussian p.d.f. and the
initialization using splitting of mixture Gaussian branch. By applying this technique
using a threshold value of the variance of state, the optimized number of mixture
Gaussian branch is estimated. ‘

The performance of the proposed method was tested on a speaker-independent

isolated word system that recognizes 50 Korean words using speech database for voice
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dialing service. The comparison of the proposed method with other methods shows

that the performance of the proposed method is superior to the conventional methods.
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