• Title/Summary/Keyword: seepage characteristics

Search Result 125, Processing Time 0.024 seconds

Numerical Analysis on Pore Water Pressure Reduction at Embankment Foundation of Fill Dam and Levee by Relief Well (감압정에 의한 필 댐 및 제방 기초지반의 간극수압 저감효과 수치해석)

  • Chang, Jaehoon;Yoo, Chanho;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.2
    • /
    • pp.25-36
    • /
    • 2022
  • In this study, seepage control effect of relief well was evaluated quantitatively on embankment of small fill dam and levee. Seepage analysis of dam and levee were carried out according to the permeability of fill material and foundation and to analyze behaviour characteristics of seepage. The up-lift pressure at toe of embankment was analyzed which is generated by seepage according to relief well installation condition. The relief well could reduce pore water pressure which is to cause piping or up-lift pressure at foundation ground of embankment and it does not be influenced on geometric condition such as dam height and slope incline. In case of relative low permeable ground, the pore water pressure reduction effect of relief well was decreased compare with high permeable ground but it shows pore water pressure reduction effect compare with no relief well condition. The reduction effect of relief well shows relative gap according to diameter and penetration length of relief well and the installation length of relief well is the most effective factor for seepage control.

Comparison of Rainfall Seepage Characteristics of Gneiss and Granite Weathered Soil (편마암풍화토와 화강암풍화토의 강우 침투특성 비교)

  • Song, Young-Suk;Yoo, Yong-Jae;Kim, Tae-Wan;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.6
    • /
    • pp.21-28
    • /
    • 2021
  • The factors of landslides depend on rainfall intensity, duration, and the characteristics of the soil slope. The conventional slope stability analysis has been carried out by assuming that the slope is saturated. But, a site slope consisting of unsaturated ground must be imitated and interpreted in order to explain a proper behavior of the slope due to rainfall. In this study, by using two major categories of soils in Korea, such as granite and gneiss weathered soils, landslide model test and numerical analysis have been compared with the difference of seepage and volumetric water content. In general, the permeability of gneiss weathered soil, which contains a lot of fines content, is slower than that of granite weathered soil. As a result, in extreme rainfall, numerical analysis can show results that can penetrate quickly, resulting in saturation or more dangerous collapse.

Experimental study of electro-osmotic hydraulic conductivity changes with voltage gradients (전압경사에 따른 전기삼투 투수계수의 변화에 대한 실험적 연구)

  • Yoon, Dong-Wook;Kim, Hyun-Ki;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1002-1007
    • /
    • 2010
  • This study evaluates the electro-osmotic hydraulic conductivity for the clay specimen by applying the series of the voltage gradient simultaneously with different stress conditions. The test results shows that the shrinkage of voids corresponds to the linear decrease in the electro-osmotic seepage velocity, and the changes of electro-chemical characteristics in the specimen induces the gradual decrease of the electro-osmotic seepage velocity with the constant voltage gradient.

  • PDF

Experimental Investigation of Seepage Properties on Weathered Residual Soils (풍화토의 침투 특성에 대한 실험적 고찰)

  • 권형민;김창엽;박영호;정충기;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.75-82
    • /
    • 2004
  • To evaluate the characteristics of permeability in weathered residual soil, flexible wall permeameter tests are performed using undisturbed samples. The Influence of hydraulic gradient and confining pressure on the permeability of weathered residual soil is analyzed. To compare the characteristics of permeability between weathered soil and sand, similar tests are performed using Jumoonjin sand. Also, piping model tests are performed to investigate the piping resistance of weathered residual soil. As a result, weathered residual soil shows very dependable permeability on hydraulic gradient and very large resisting ability against piping compared with sand.

Stability analyses of dual porosity soil slope

  • Satyanaga, Alfrendo;Moon, Sung-Woo;Kim, Jong R.
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.77-87
    • /
    • 2022
  • Many geotechnical analyses require the investigation of water flow within partially saturated soil zone to incorporate the effect of climatic conditions. It is widely understood that the hydraulic properties of the partially saturated soil should be included in the transient seepage analyses. However, the characteristics of dual porosity soils with dual-mode water retention curve are normally modelled using single-mode mathematical equation for simplification of the analysis. In reality, the rainwater flow can be affected significantly by the dual-mode hydraulic properties of the soil. This paper presents the variations of safety factor for dual porosity soil slope with dual-mode water retention curve and dual-mode unsaturated permeability. This paper includes the development of the new dual-mode unsaturated permeability to represent the characteristics of soil with the dual-mode water retention curve. The finite element analyses were conducted to examine the role of dual-mode water retention curve and dual-mode unsaturated permeability on the variations of safety factor under rainfall loading. The results indicate that the safety factor variations of dual porosity soil slope modelled using the dual-mode water retention curve and the unsaturated permeability equation are lower than those of dual porosity slope modelled using single-mode water retention curve and unsaturated permeability equations.

Macrotidal Beach Classifications Considering Beach Profiles and Changes: The Case of Beaches in Taean Region (2017-2018) (지형형태와 변화를 반영한 대조차 해빈 분류: 태안지역 해빈을 사례로(2017-2018))

  • Kim, Chan Woong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.47-65
    • /
    • 2019
  • A case study was conducted in Taean region to seek a more detailed macrotidal beach classification than existing beach classification models (Masselink and Short, 1993). Seepage and ridge & runnel were used for classification. On 20 beaches, 68 transects were surveyed 5 times using VRS-GPS. Cross-section area from the transect profiles, mean grain size from sediment analysis, significant wave height from Swan-wave modeling and beach embaymentization from aerial photograph analysis were used to identify the characteristics of the individual types. The transects were classified into 5 types in Taean region; Type 1: low tidal terrace, Type 2: low tidal terrace & ridge, Type 3: dissipative, Type 4: seasonal ridge, and Type 5: ridge & runnel. Generally, seepage was related to coarse sediment size and ridge & runnel was related to high significant wave height. Each type has different characteristics and there was a tendency between the types. The low tidal terrace type had coarse sediments, because this type is excluded from the littoral cell. In this study, the ridge and runnel type could be applied to the classification because the study area is limited only to the macrotidal environment in Taean region.

Study on the Characteristics of Shear Strength on the Weathered Granite Soil Slope in Accordance with the Rainfall (강우에 따른 화강암질 풍화토 사면의 전단강도 특성에 관한 연구)

  • Shim Tae-Sup;Kim Sun-Hak;Ki Wan-Seo;Joo Seung-Wan
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.349-360
    • /
    • 2004
  • This study calculated the pore water pressure, the depth of seepage, the constant of the strength in accordance with the slope inclination and the rainfall intensity over the slope built by the weathered granite soil (SP, SM). And, the change of the shear strength in accordance with the rainfall has been compared and analyzed by applying the shear strength formula of the unsaturated soil. As a result, the rainfall intensity is stronger and the slope inclination is gentler the seepage speed in accordance with the rainfall became faster proportionally. As a result of comparing and analyzing both the theoretical value of Lumb and the actual value of the model, it can be said that the actual value is faster. Since SM shows the bigger shear strength than SP, it can also be said that as the granules increase, the coefficient of permeability becomes smaller; and as the seepage rate became smaller, it affects the seepage speed. Likewise, the shear strength within the slope displays the smallest shear strength at the inclination of 1:1.5 the reason of its decrease turned out that it was due to the increase of the pore water pressure.

A Study on the Seepage Behavior of Embankment with Weak Zone using Numerical Analysis and Model Test (취약대를 가진 모형제방의 침투거동에 관한 연구)

  • Park, Mincheol;Im, Eunsang;Lee, Seokyoung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.5-13
    • /
    • 2016
  • This research is focused on the seepage behavior of embankment which had the weak zone with big permeability. The distributed TDR (Time Domain Reflectometer) and point sensors such as settlement gauge, pore water pressuremeter, vertical total stressmeter, and FDR (Frequency Domain Reflectometer) sensor were used to measure the seepage characteristics and embankment behavior. Also, the measured data were compared to the data of 2-D and 3-D numerical analysis. The dimension of model embankment was 7 m length, 5 m width and 1.5 m height, which is composed of fine-grained sands and the water level of embankment was 1.3 m height. The seepage behavior of measuring and numerical analysis were very similar, it means that the proper sensing system can monitor the real-time safety of embankment. The result by 2-D and 3-D numerical analysis showed similar saturation processing, however in case of weak zone, the phreatic lines of 2-D showed faster movement than that of 3-D analysis, and finally they converged.

Interaction between Groundwater and Surface Water in Urban Area (도시지역의 지하수와 하천수의 교류량)

  • Bae, Sang-Keun;Lee, Seung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.919-927
    • /
    • 2008
  • Flow exchanges between stream and groundwater are assessed on urban streams in Daegu, Korea. Two rivers and 25 streams with the total length of 240 km run through the study area. The interaction between surface water and groundwater was estimated using Darcy's method. The study was conducted by dividing the basin into 16 smaller watersheds, and for comparison purposes. Groundwater level, surface water level, hydraulic conductivity, thickness of aquifer, and the distance between the well and the nearest stream were used for quantifying the interaction. To investigations the groundwater interaction in the watersheds, the amount of effluent seepage from groundwater to the stream, the amount of influent seepage from the stream to groundwater, and the amount of annual interaction between surface water and groundwater were computed. The total amount of effluent seepage from the groundwater to stream in the basin was approximately $72{\times}10^6m^3/year$. The total amount of influent seepage from the stream to groundwater was approximately $35{\times}10^6m^3/year$. It appeared that the total amount of annual interaction between surface water and groundwater was approximately $108{\times}10^6m^3/year$ and the total groundwater flow balance was approximately $37{\times}10^6m^3/year$. The annual amount of interaction between the surface water and groundwater was the largest in the Goryung Bridge Basin($29{\times}10^6m^3/year$) and the least in the Dalchang Dam Basin($0.2{\times}10^6m^3/year$). The results show that flow exchanges between stream and groundwater are very active and that there are significant difference among the smaller watersheds. Finally, the results indicate that it is necessary to further investigate to more precisely understand the interaction characteristics between surface water and groundwater in urban areas.