Browse > Article
http://dx.doi.org/10.12989/gae.2022.28.1.077

Stability analyses of dual porosity soil slope  

Satyanaga, Alfrendo (Department of Civil and Environmental Engineering, Nazarbayev University)
Moon, Sung-Woo (Department of Civil and Environmental Engineering, Nazarbayev University)
Kim, Jong R. (Department of Civil and Environmental Engineering, Nazarbayev University)
Publication Information
Geomechanics and Engineering / v.28, no.1, 2022 , pp. 77-87 More about this Journal
Abstract
Many geotechnical analyses require the investigation of water flow within partially saturated soil zone to incorporate the effect of climatic conditions. It is widely understood that the hydraulic properties of the partially saturated soil should be included in the transient seepage analyses. However, the characteristics of dual porosity soils with dual-mode water retention curve are normally modelled using single-mode mathematical equation for simplification of the analysis. In reality, the rainwater flow can be affected significantly by the dual-mode hydraulic properties of the soil. This paper presents the variations of safety factor for dual porosity soil slope with dual-mode water retention curve and dual-mode unsaturated permeability. This paper includes the development of the new dual-mode unsaturated permeability to represent the characteristics of soil with the dual-mode water retention curve. The finite element analyses were conducted to examine the role of dual-mode water retention curve and dual-mode unsaturated permeability on the variations of safety factor under rainfall loading. The results indicate that the safety factor variations of dual porosity soil slope modelled using the dual-mode water retention curve and the unsaturated permeability equation are lower than those of dual porosity slope modelled using single-mode water retention curve and unsaturated permeability equations.
Keywords
numerical analyses; safety factor; seepage; slope stability; partially saturated soil;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Brooks, R.H. and Corey, A.T. (1964), Hydraulic Properties of Porous Media, Fort Collins: Colorado State University, Colorado, USA.
2 Zhai, Q. and Rahardjo, H. (2015), "Estimation of permeability function from the soil-water characteristic curve", Eng. Geol., 199, 148-156. https://doi.org/10.1016/j.enggeo.2015.11.001.   DOI
3 Zhang, L. and Chen, Q. (2005), "Predicting bimodal soil-water characteristic curves", J. Geotech. Geoenviron. Eng., 131(5), 666-670. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(666).   DOI
4 Rahardjo, H., Santoso, V.A., Leong, E.C., Ng, Y.S. and Hua, C.J. (2011), "Numerical analyses and monitoring performance of residual soil slopes", Soils Found., 51(3), 471-482. https://doi.org/10.3208/sandf.51.471.   DOI
5 Fredlund, M.D., Wilson, G.W. and Fredlund, D.G. (2002), "Use of the grain-size distribution for estimation of the soil-water characteristic curve", Can. Geotech. J., 39(5), 1103-1117. https://doi.org/10.1139/t02-049.   DOI
6 Zhai, Q., Rahardjo, H. and Satyanaga, A. (2017), "Effects of residual suction and residual water content on the estimation of permeability function", Geoderma, 303(1), 165-177. https://doi.org/10.1016/j.geoderma.2017.05.019.   DOI
7 Childs, E.C. and Collis-George, N. (1950), "The permeability of porous materials", Proceedings of The Royal Society A, 201(1066), 392-405. https://doi.org/10.1098/rspa.1950.0068.   DOI
8 Deng, D., Lu, K. and Li, L. (2019), "LE analysis on unsaturated slope stability with introduction of nonlinearity of soil strength", Geomech. Eng., 19(2), 179-191. https://doi.org/10.12989/gae.2019.19.2.179.   DOI
9 Fredlund, D.G. and Xing, A. (1994), "Equations for the soil-water characteristic curve", Can. Geotech. J., 31(3), 521-532. https://doi.org/10.1139/t94-061.   DOI
10 Fredlund, D.G. and Rahardjo, H. (1993), Soil Mechanics for Unsaturated Soils, John Wiley & Sons, Inc., New York, NY, USA.
11 Gitirana Jr., G.F.N. and Fredlund, D.G. (2004), "Soil-water characteristic curve equation with independent properties", J. Geotech. Geoenviron. Eng., 130(2), 209-212. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(209).   DOI
12 Zhai, Q., Rahardjo, H., Satyanaga, A., Dai, G and Zhuang, Y (2020), "Framework to estimate the soil-water characteristic curve for soils with different void ratios", Bull. Eng. Geology Environ., 79, 4399-4409. https://doi.org/10.1007/s10064-020-01825-8.   DOI
13 Zhai, Q., Rahardjo, H. and Satyanaga, A. (2018), "A pore-size distribution function based method for estimation of hydraulic properties of sandy soils", Eng. Geol., 246, 288-292. https://doi.org/10.1016/j.enggeo.2018.09.031   DOI
14 Sheng, D. (2011), "Review of fundamental principles in modelling unsaturated soil behaviour", Comput. Geotech., 38(6), 757-776. https://doi.org/10.1016/j.compgeo.2011.05.002.   DOI
15 Smettem, K.R.J. and Kirkby, C., (1990), "Measuring the hydraulic properties of a stable aggregated soil", J. Hydrology, 117 (1-4), 1-13. https://doi.org/10.1016/0022-1694(90)90084-B.   DOI
16 Van Genuchten, M.T. (1980), "A close form equation predicting the hydraulic conductivity of unsaturated soil", Soil Sci. Soc. Am. J., 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.   DOI
17 Wijaya, M. and Leong, E.C. (2016), "Equation for unimodal and bimodal soil-water characteristic curves", Soils Found., 56(2), 291-300. https://doi.org/10.1016/j.sandf.2016.02.011.   DOI
18 Zhai, Q., Rahardjo, H., Satyanaga, A. and Priono (2017), "Effect of bimodal soil-water characteristic curve on the estimation of permeability function", Eng. Geol., 230(9), 142-151. https://doi.org/10.1016/j.enggeo.2017.09.025.   DOI
19 Kassim, A., Lee, M.L., Gofar, N. and Rahardjo, H. (2012), "Modelling of suction distributions in an unsaturated heterogeneous residual soil slope", J. Eng. Geology, 131-132, 70-82. https://doi.org/10.1016/j.enggeo.2012.02.005.   DOI
20 Jotisankasa, A. and Mairaing, W. (2010), "Suction-monitored direct shear testing of residual soils from landslide-prone areas", J. Geotech. Geoenviron. Eng., 136(3), 533-537. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000225.   DOI
21 Kim, Y. and Jeong, S. (2017), "Modeling of shallow landslides in an unsaturated soil slope using a coupled model", Geomech. Eng., 13(2), 353-370. https://doi.org/10.12989/gae.2017.13.2.353.   DOI
22 Kosugi, K. (1994), "Lognormal distribution model for unsaturated soil hydraulic properties", Water Resour. Res., 32(9), 2697-2703. https://doi.org/10.1029/96WR01776.   DOI
23 Delleur, J.W. (1999), Handbook of Groundwater Engineering, CRC Press, New York, NY, USA.
24 Rahardjo, H., Nistor, M., Gofar, N., Satyanaga, A., Qin, X. and Ip., C.Y. (2019), "Spatial distribution, variation and trend of five-day antecedent rainfall in Singapore", Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 14(3), 177-191. https://doi.org/10.1080/17499518.2019.1639196.   DOI
25 Satyanaga, A., Rahardjo, H. and Zhai, Q. (2017), "Estimation of unimodal water characteristic curve for gap-graded soil", Soils Found., 57(5), 789-801. https://doi.org/10.1016/j.sandf.2017.08.009.   DOI
26 Satyanaga, A., Rahardjo, H., Leong, E.C. and Wang, J.Y. (2013), "Water characteristic curve of soil with bimodal grain-size distribution", Comput. Geotech., 48, 51-61. https://doi.org/10.1016/j.compgeo.2012.09.008.   DOI
27 Mustafa, M.R., Rezaur, R.B., Rahardjo, H., Isa, M.H. and Arif, A. (2015), "Artificial neural network modeling for spatial and temporal variations of pore-water pressure responses to rainfall", Adv. Meteorology, 2015(273730), 1-12. https://doi.org/10.1155/2015/273730.   DOI
28 Pedroso, D.M., Sheng, D. and Zhao, J. (2009), "The concept of reference curves for constitutive modelling in soil mechanics", Comput. Geotech., 36(1-2), 149-165. https://doi.org/10.1016/j.compgeo.2008.01.009.   DOI
29 Coutinho, R.Q., Silva, M.M. and Lafayete, K. (2011), "Geotechnical characterization of two unsaturated mature granite residual soils from Pernambuco, Brazil", Proceedings of 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering 64th Canadian Geotechnical Conference, Toronto, Canada, October.
30 Deng, D., Wen, S., Lu, K. and Li, L. (2020), "Calculation model for the shear strength of unsaturated soil under nonlinear strength theory", Geomech. Eng., 21(3), 247-258. http://dx.doi.org/10.12989/gae.2020.21.3.247.   DOI
31 Kristo, C., Rahardjo, H. and Satyanaga, A. (2019), "Effect of hysteresis on the stability of residual soil slope", Int. Soil Water Conservation Res., 7(3), 226-238. https://doi.org/10.1016/j.iswcr.2019.05.003.   DOI
32 Gardner, W.R (1958), "Mathematics of isothermal water conduction in unsaturated soils", Proceedings of the 37th Annual Meeting of the Highway Research Board, Washington D.C., USA, January.
33 Jotisankasa, A., Vathananukij, H. and Coop, M.R. (2009), "Soil-water retention curves of some silty soils and their relations to fabrics", Proceedings of The 4th Asia Pacific Conference on Unsaturated Soils, Newcastle, Australia, November.
34 Public Utilities Board (2000), Code of practice on surface water drainage, Public Utilities Board, Singapore, Singapore.
35 Qi, S., Vanapalli, S.K., Yang, X.-G., Zhou, J.-W. and Lu, G.-D. (2019), "Stability analysis of an unsaturated expansive soil slope subjected to rainfall infiltration", Geomechanics and Engineering, 19(1), 1-9. https://doi.org/10.12989/gae.2019.19.1.011.   DOI
36 Rahardjo, H. and Satyanaga, A. (2019) "Sensing and monitoring for assessment of rainfall-induced slope failures in residual soil", Geotech. Eng., 172(6), 496-506. https://doi.org/10.1680/jgeen.18.00208.   DOI
37 Rahardjo, H., Satyanaga, A., Mohamed, H., Ip, C.Y. and Shah, R.S. (2018), "Comparison of soil-water characteristic curves from conventional testing and combination of small-scale centrifuge and dew point methods", Geotech. Geol. Eng., 37, 659-672). https://doi.org/10.1007/s10706-018-0636-2.   DOI
38 Durner, W. (1994), "Hydraulic conductivity estimation for soil with heterogeneous pore structure", Water Resour. Res., 30(2), 211-223. https://doi.org/10.1029/93WR02676.   DOI
39 Fredlund, D.G., Rahardjo, H. and Fredlund, M.D. (2012), Unsaturated Soil Mechanics in Engineering Practice, John Wiley & Sons, Inc., New York, NY, USA.
40 Fredlund, D.G., Xing, A. and Huang, S. (1994), "Predicting the permeability function for unsaturated soils using the soil-water characteristic curve", Can. Geotech. J., 31(4), 533-546. https://doi.org/10.1139/t94-062.   DOI
41 Kunze, R.J., Uehara, G. and Graham, K. (1968), "Factors important in the calculation of hydraulic conductivity", Soil Sci. Soc. Am. J., 32(6), 760-765. https://doi.org/10.2136/sssaj1968.03615995003200060020x.   DOI
42 Leong, E.C. and Rahardjo, H. (1997), "Review of soil-water characteristic curve equations", J. Geotech. Geoenviron. Eng., 123(12), 1106-1117. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1106).   DOI
43 Mallants, D., Tseng, P.H., Toride, N., Tinunerman, A. and Feyen, J. (1997), "Evaluation of multimodal hydraulic functions in characterizing a heterogeneous field soil", J. Hydrology, 195 (1-4), 172-199. https://doi.org/10.1016/S0022-1694(96)03251-9.   DOI
44 Chan, Y.E.C., Ng, Q.L., Satyanaga, A. and Rahardjo, H. (2020), "Regional stability and adaptation measures against rainfall-induced slope failures", Environ. Geotechnics, Published online on 29 January 2021, 1-16. https://doi.org/10.1680/jenge.20.00089.   DOI
45 Othmer, H., Diekkruger, B. and Kutilek, M., (1991), "Bimodal porosity and unsaturated hydraulic conductivity", Soil Science, 152(3), 139-149. https://doi.org/10.1097/00010694-199109000-00001.   DOI
46 Satyanaga, A., Rahardjo, H. and Hua, C.J. (2019), "Numerical simulation of capillary barrier system under rainfall infiltration", ISSMGE Int. J. Geoeng. Case Histories, 5(1), 43-54. http://dx.doi.org/10.4417/IJGCH-05-01-04.   DOI
47 Wilson, G.V., Jardine, P.M. and Gwo, J.P. (1992), "Modeling the hydraulic properties of a multi-region soil", Soil Sci. Soc. Am. J., 56(6), 1731-1737. https://doi.org/10.2136/sssaj1992.03615995005600060012x.   DOI
48 Al-Mahbashi, A.M., Elkady, T.Y. and Alrefeai, T.O. (2015), "Soil water characteristic curve and improvement in lime treated expansive soil", Geomech. Eng., 8(5), 687-696. https://doi.org/10.12989/gae.2015.8.5.687.   DOI
49 ASTM D2487-17e1 (2017), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). American Society for Testing and Materials; ASTM International, Pennsylvania, USA.
50 Burger, C.A. and Shackelford, C.D. (2001), "Evaluating dual porosity of pelletized diatomaceous earth using bimodal soil-water characteristic curve functions", Can. Geotech. J., 38(1), 53-66. https://doi.org/10.1139/t00-084.   DOI
51 Satyanaga, A. and Rahardjo, H. (2019a), "Stability of unsaturated soil slopes covered with Melastoma Malabathricum in Singapore", Proceeding of the Institution of Civil Engineers - Geotechnical Engineering, 172(6), 530-540. https://doi.org/10.1680/jgeen.18.00215.   DOI
52 Rahardjo, H., Santoso, V.A., Leong, E.C., Ng, Y.S. and Tam, C.P.H. (2012), "Effect of vetiver grass on slope stability", Proceedings of 11th International and 2nd North American Symposium on Landslides, Banff, Canada, June.
53 Rahardjo, H., Meilani, I., Rezaur, R.B. and Leong, E.C. (2009), "Shear strength characteristics of a compacted soil under infiltration conditions", Geomech. Eng., 1(1), 35-52. https://doi.org/10.12989/gae.2009.1.1.035.   DOI
54 Krisnanto, S., Rahardjo, H. and Leong, E.C. (2020), "Numerical study on the effect of crack network representation on water content in cracked soil", Geomech. Eng., 21(6), 537-549. https://doi.org/10.12989/gae.2020.21.6.537.   DOI
55 Rahimi, A., Rahardjo, H. and Leong, E.C. (2015), "Effect of range of soil-water characteristic curve measurements on estimation of permeability function", Eng. Geol., 185, 96-104. https://doi.org/10.1016/j.enggeo.2014.11.017.   DOI
56 Ross, P.J. and Smettem, K.R.J. (1993), "Describing soil hydraulic properties with sums of simple functions", Soil Sci. Soc. Am. J., 57(1), 26-29. https://doi.org/10.2136/sssaj1993.03615995005700010006x.   DOI
57 Satyanaga, A. and Rahardjo, H. (2019b), "Unsaturated shear strength of soil with bimodal soil-water characteristic curve", Geotechnique, 69(9), 828-832. https://doi.org/10.1680/jgeot.17.P.108.   DOI
58 Li, X., Li, J.H. and Zhang, L.M. (2014), "Predicting bimodal soil-water characteristic curves and permeability functions using physically based parameters", Comput. Geotech., 57, 85-96. https://doi.org/10.1016/j.compgeo.2014.01.004.   DOI