• Title/Summary/Keyword: seed-mediated growth

Search Result 31, Processing Time 0.045 seconds

Large-Scale Synthesis of Plate-Type ZnO Crystal with High Photocatalytic Activity (광촉매 활성이 우수한 판상형 ZnO 결정의 대용량 합성)

  • Kim, Da-Jung;Kim, Bo-Mi;Joe, Ara;Shim, Kyu-Dong;Han, Hyo-Won;Noh, Gyung-Hyun;Jang, Eue-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.148-155
    • /
    • 2015
  • ZnO nanoplates were prepared by seed-mediated soft-solution process. Photocatalytic property of ZnO nanoplates was superior to that of conventional ZnO nanoparticles owing to the enhanced (0001) plane with large defect sites. In addition, we found that silica coating method could provide to reduce cytotoxicity of ZnO nanoplates. Finally, we have successfully synthesized for the first time large-scale synthesis of plate-type ZnO as few hundreds gram scale for industrial applications through controlling various reagents of growth solution.

Nano-Micelle of Moringa Oleifera Seed Oil Triggers Mitochondrial Cancer Cell Apoptosis

  • Abd-Rabou, Ahmed A;Zoheir, Khairy M A;Kishta, Mohamed S;Shalby, Aziza B;Ezzo, Mohamed I
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4929-4934
    • /
    • 2016
  • Cancer, a worldwide epidemic disease with diverse origins, involves abnormal cell growth with the potential to invade other parts of the body. Globally, it is the main cause of mortality and morbidity. To overcome the drawbacks of the commercially available chemotherapies, natural products-loaded nano-composites are recommended to improve cancer targetability and decrease the harmful impact on normal cells. This study aimed at exploring the anti-cancer impacts of Moringa oleifera seed oil in its free- (MO) and nano-formulations (MOn) through studying whether it mechanistically promotes mitochondrial apoptosis-mediating cell death. Mitochondrial-based cytotoxicity and flow cytometric-based apoptosis analyses were performed on cancer HepG2, MCF7, HCT 116, and Caco-2 cell lines against normal kidney BHK-21 cell line. The present study resulted that MOn triggered colorectal cancer Caco-2 and HCT 116 cytotoxicity via mitochondrial dysfunction more powerful than its free counterpart (MO). On the other side, MOn and MO remarkably induces HCT 116 mitochondrial apoptosis, while sparing normal BHK-21 cells with minimal cytotoxic effect. The present results concluded that nano-micelle of Moringa oleifera seed oil (MOn) can provide a novel therapeutic approach for colorectal and breast cancers via mitochondrial-mediated apoptosis, while sparing normal and even liver cancer cells a bit healthy or with minimal harmful effect. Intriguingly, MOn induced breast cancer not hepatocellular carcinoma cell death.

Electrochemical Synthesis of Dumbbell-like Au-Ni-Au Nanorods and Their Surface Plasmon Resonance

  • Park, Yeon Ju;Liu, Lichun;Yoo, Sang-Hoon;Park, Sungho
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.57-62
    • /
    • 2012
  • In this report, we demonstrate that the longitudinal localized surface plasmon resonance mode can be suppressed when the nanorods were in dumbbell shape. The seed nanorods were synthesized by electrochemical deposition of metals into the pores of anodic aluminum oxide templates. The dumbbell-like nanorods were grown from seed Au-Ni-Au nanorods by a rate-controlled seed-mediated growth strategy. The selective deposition of Au atoms onto Au blocks of Au-Ni-Au nanorods produced larger diameter of Au nanorods with bumpy surface resulting in dumbbell-like nanorods. The morphology of nanorods depended on the reduction rate of $AuCl_4^-$, slow rate producing smooth surface of Au nanorods, but high reduction rate producing bumpy surface morphology. Through systematic investigation into the UV-Vis-NIR spectroscopy, we found that the multiple localized surface plasmon resonance (LSPR) modes were available from single-component Au nanorods. And, their LSPR modes of Au NRs with bumpy surface, compared to the smooth seed Au NRs, were red-shifted, which was obviously attributed to the increased electron oscillation pathways. While the longitudinal LSPR modes of smoothly grown Au NRs were blue-shifted except for a dipole transverse LSPR mode, which can be interpreted by decreased aspect ratio. In addition, dumbbell-like nanorods showed an almost disappeared longitudinal LSPR mode. It reflects that the plasmonic properties can be engineered using complex nanorods structure.

Herbicide Resistant Cabbage (Brassica oleracea ssp. capitata) Plants by Agrobacterium-mediated Transformation

  • Lee, Yeon-Hee;Lee, Seung-Bum;Suh, Suk-Chul;Byun, Myung-Ok;Kim, Ho-Il
    • Journal of Plant Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • Transgenic cabbage (Brassica oleracea ssp. capitata) plants resistant to the commercial herbicide Bast $a^{R}$ were obtained by Agrobacterium tumefaciens - mediated transformation. Hypocotyl segments of in vitro grown plants were infected with Agrobacterium tumefaciens LBA 4404 harboring plasmid pMOG6-Bar which contains hpt and bar genes. Explants were cultured on callus induction medium (MS basal medium + 1 mg/L NAA + 2 mg/L BA + 2 mg/L AgN $O_3$+ 100 mg/L carbenicillin + 250 mg/L cefotaxime) supplemented with 15 mg/L hygromycin. Hygromycin resistant calluses were transferred to shoot regeneration medium (MS basal medium + 0.1 mg/L NAA + 2 mg/L BA + 3% sucrose + 2 mg/L AgN $O_3$+ 15 mg/L hygromycin + 250 mg/L cefotaxime + 100 mg/L carbenicillin). In order to induce roots, elongated shoots were placed on the MS medium without plant growth regulators and hygromycin. Southern blot analysis of several putative transgenic plants indicated that one to five intact copies of Apt and bar genes were incorporated into the genome. Expression of bar gene was confirmed by Northern blot analysis and by herbicide resistant phenotype. Seed progeny from self-pollinated transformants expressed the herbicide resistance and showed Mendelian segregation of the introduced gene.e.

  • PDF

The Shaker Type Potassium Channel, GORK, Regulates Abscisic Acid Signaling in Arabidopsis

  • Lim, Chae Woo;Kim, Sang Hee;Choi, Hyong Woo;Luan, Sheng;Lee, Sung Chul
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.684-691
    • /
    • 2019
  • Evolution of adaptive mechanisms to abiotic stress is essential for plant growth and development. Plants adapt to stress conditions by activating the abscisic acid (ABA) signaling pathway. It has been suggested that the ABA receptor, clade A protein phosphatase, SnRK2 type kinase, and SLAC1 anion channel are important components of the ABA signaling pathway. In this study, we report that the shaker type potassium (K+) channel, GORK, modulates plant responses to ABA and abiotic stresses. Our results indicate that the full length of PP2CA is needed to interact with the GORK C-terminal region. We identified a loss of function allele in gork that displayed ABA-hyposensitive phenotype. gork and pp2ca mutants showed opposite responses to ABA in seed germination and seedling growth. Additionally, gork mutant was tolerant to the NaCl and mannitol treatments, whereas pp2ca mutant was sensitive to the NaCl and mannitol treatments. Thus, our results indicate that GORK enhances the sensitivity to ABA and negatively regulates the mechanisms involved in high salinity and osmotic stresses via PP2CA-mediated signals.

Confirmation of Drought Tolerance of Ectopically Expressed AtABF3 Gene in Soybean

  • Kim, Hye Jeong;Cho, Hyun Suk;Pak, Jung Hun;Kwon, Tackmin;Lee, Jai-Heon;Kim, Doh-Hoon;Lee, Dong Hee;Kim, Chang-Gi;Chung, Young-Soo
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.413-422
    • /
    • 2018
  • Soybean transgenic plants with ectopically expressed AtABF3 were produced by Agrobacterium-mediated transformation and investigated the effects of AtABF3 expression on drought and salt tolerance. Stable Agrobacterium-mediated soybean transformation was carried based on the half-seed method (Paz et al. 2006). The integration of the transgene was confirmed from the genomic DNA of transformed soybean plants using PCR and the copy number of transgene was determined by Southern blotting using leaf samples from $T_2$ seedlings. In addition to genomic integration, the expression of the transgenes was analyzed by RT-PCR and most of the transgenic lines expressed the transgenes introduced. The chosen two transgenic lines (line #2 and #9) for further experiment showed the substantial drought stress tolerance by surviving even at the end of the 20-day of drought treatment. And the positive relationship between the levels of AtABF3 gene expression and drought-tolerance was confirmed by qRT-PCR and drought tolerance test. The stronger drought tolerance of transgenic lines seemed to be resulted from physiological changes. Transgenic lines #2 and #9 showed ion leakage at a significantly lower level (P < 0.01) than ${\underline{n}}on-{\underline{t}}ransgenic$ (NT) control. In addition, the chlorophyll contents of the leaves of transgenic lines were significantly higher (P < 0.01). The results indicated that their enhanced drought tolerance was due to the prevention of cell membrane damage and maintenance of chlorophyll content. Water loss by transpiration also slowly proceeded in transgenic plants. In microscopic observation, higher stomata closure was confirmed in transgenic lines. Especially, line #9 had 56% of completely closed stomata whereas only 16% were completely open. In subsequent salt tolerance test, the apparently enhanced salt tolerance of transgenic lines was measured in ion leakage rate and chlorophyll contents. Finally, the agronomic characteristics of ectopically expressed AtABF3 transgenic plants ($T_2$) compared to NT plants under regular watering (every 4 days) or low rate of watering condition (every 10 days) was investigated. When watered regularly, the plant height of drought-tolerant line (#9) was shorter than NT plants. However, under the drought condition, total seed weight of line #9 was significantly higher than in NT plants (P < 0.01). Moreover, the pods of NT plants showed severe withering, and most of the pods failed to set normal seeds. All the evidences in the study clearly suggested that overexpression of the AtABF3 gene conferred drought and salt tolerance in major crop soybean, especially under the growth condition of low watering.

Humic Acid and Synthesized Humic Mimic Promote the Growth of Italian Ryegrass

  • Khaleda, Laila;Kim, Min Gab;Kim, Woe-Yeon;Jeon, Jong-Rok;Cha, Joon-Yung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.242-247
    • /
    • 2017
  • Humic acid (HA) is a complex organic matter found in the environments, especially in grassland soils with a high density. The bioactivity of HA to promote plant growth depends largely on its extraction sources. The quality-control of HA and the quality improvements via an artificial synthesis are thus challenging. We recently reported that a polymeric product from fungal laccase-mediated oxidation of catechol and vanillic acid (CAVA) displays a HA-like activity to enhance seed germination and salt stress tolerance in a model plant, Arabidopsis. Here, we examined whether HA or CAVA enhances the growth of Italian ryegrass seedling. Height and fresh weight of the plant with foliar application of HA or CAVA were bigger than those with only water. Interestingly, enhanced root developments were also observed in spite of the foliar treatments of HA or CAVA. Finally, we proved that HA or CAVA promotes the regrowth of Italian ryegrass after cutting. Collectively, CAVA acts as a HA mimic in Italian ryegrass cultivation, and both as a biostimulant enhanced the early growth and regrowth after cutting of Italian ryegrass, which could improve the productivity of forage crops.

Water relations of plants under environmental stresses: role of aquaporins

  • Kang, H.S.;Ahn, S.J.;Hong, S.W.;Chung, G.C.
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.71-80
    • /
    • 2005
  • Effects of low temperature ($8^{\circ}C$) on the hydraulic conductivity of young roots of a chilling-sensitive (cucumber; Cucumis sativus L.) and a chilling-resistant (figleaf gourd; Cucurbita ficifolia Bouche) crop have been measured at the levels of whole root systems (root hydraulic conductivity, $Lp_r$) and of individual cortical cells (cell hydraulic conductivity, Lp). In figleaf gourd, there was a reduction only in hydrostatic $Lp_r$ but not in osmotic $Lp_r$ suggesting that the activity of water channels was not much affected by low root temperature (LRT)treatment in this species. Changes in cell Lp in response to chilling and recovery were similar asroot level, although they were more intense at the root level. Roots of figleaf gourd recovered better from LRT treatment than those of cucumber. In figleaf gourd, recovery (both at the root and cell level) often resulted in Lp and $Lp_r$ values which were even bigger than the original, i.e. there was an overshoot in hydraulic conductivity. These effects were larger forosmotic (representing the cell-to-cell passage of water) than for hydrostatic $Lp_r$. After a short term (1 d) exposure to $8\;^{\circ}C$ followed by 1 d at $20\;^{\circ}C$, hydrostatic $Lp_r$ of cucumber nearly recovered and that of figleaf gourd still remained higher due to the overshoot. On the contrary, osmotic $Lp_r$ and cell Lp in both species remained high by a factor of 3 as compared to the control, possibly due to an increased activity of water channels. After pre-conditioning of roots at LRT, increased hydraulic conductivitywas completely inhibited by $HgCl_2$ at both the root and cell levels. Different from figleaf gourd, recovery from chilling was not complete in cucumber after longer exposure to LRT. It is concluded that at LRT, both changes in the activity of aquaporins and alterations of root anatomy determine the water uptake in both species. To better understand the aquaporin function in plants under various stress conditions, we examined the transgenic Arabidopsisand tobacco plants that constitutively overexpress ArabidopsisPIP1;4 or PIP2;5 under various abiotic stress conditions. No significant differences in growth rates were found between the transgenic and wild-type plants under favorable growth conditions. By contrast, overexpression of PIP1;4 or PIP2;5 had a negative effect on seed germination and seedling growth under drought stress, whereas it had a positive effect under cold stress and no effect under salt stress. Measurement of water transport by cell pressure probe revealed that these observed phenotypes under different stress conditions were closely correlated with the ability of water transport by each aquaporin in the transgenic plants. Together, our results demonstrate that PIP-type aquaporins play roles in seed germination, seedling growth, and stress response of Arabidopsis and tobacco plants under various stress conditions, and emphasize the importance of a single aquaporin-mediated water transport in these cellular processes.

  • PDF

Effect of Ethanol Extract of Safflower Seed on Bone Loss in Ovariectomized Rat

  • Cho, Sung-Hee;Choi, Sang-Won;Choi, Young-Sun;Kim, Hee-Jung;Park, Youn-Hee;Bae, Yong-Chul;Lee, Won-Jung
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.392-397
    • /
    • 2007
  • We investigated whether ethanol extracts of the safflower seeds containing phenolic compounds were responsible for the bone-protecting effects. Crude ethanol extract (CEE) of the safflower seeds was fed for 4 weeks at the level of 1% in diet to female Sprague-Dawley rats that had been subjected to bilateral ovariectomy (OVX). The CEE effects (OVX+CEE) were evaluated by comparing results obtained from OVX, Sham, and OVX injected with $17{\beta}$-estradiol ($OVX+E_2$) groups. OVX resulted in a dramatic reduction in the trabecular bone mass of the proximal tibia (approximately 40% of the Sham group) and an increase in fat deposition in bone marrow. In $OVX+E_2$ group, the bone loss was completely prevented as well as marrow adiposity. In OVX+CEE group, approximately 80% of the bone mass was maintained compared with Sham group and fat deposition in the bone marrow was prevented. Meanwhile, the partially purified ethanol extract containing the phenolic compounds stimulated proliferation of the ROS 17/2.8 osteoblast-like cells in a dose-dependent manner, as potently as positive controls of $E_2$ and genistein. The present data demonstrate that the ethanol extracts of safflower seeds reduced bone loss caused by estrogen deficiency. The bone-protecting effect of safflower seeds seems to be mediated, at least partly, by the stimulating effect of the phenolic compounds on the growth of osteoblasts.

Overexpression of a Chromatin Architecture-Controlling ATPG7 has Positive Effect on Yield Components in Transgenic Soybean

  • Kim, Hye Jeong;Cho, Hyun Suk;Pak, Jun Hun;Kim, Kook Jin;Lee, Dong Hee;Chung, Young-Soo
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.237-242
    • /
    • 2017
  • AT-hook proteins of plant have shown to be involved in growth and development through the modification of chromatin architecture to co-regulate transcription of genes. Recently, many genes encoding AT-hook protein have been identified and their involvement in senescence delay is investigated. In this study, soybean transgenic plants overexpressing chromatin architecture-controlling ATPG7 gene was produced by Agrobacterium-mediated transformation and investigated for the positive effect on the important agronomic traits mainly focusing on yield-related components. A total of 27 transgenic soybean plants were produced from about 400 explants. $T_1$ seeds were harvested from all transgenic plants. In the analysis of genomic DNAs from soybean transformants, ATPG7 and Bar fragments were amplified as expected, 975 bp and 408 bp in size, respectively. And also exact gene expression was confirmed by reverse transcriptase-PCR (RT-PCR) from transgenic line #6, #7 and #8. In a field evaluation of yield components of ATPG7 transgenic plants ($T_3$), higher plant height, more of pod number and greater average total seed weight were observed with statistical significance. The results of this study indicate that the introduction of ATPG7 gene in soybean may have the positive effect on yield components.