• Title/Summary/Keyword: seed pathogens

Search Result 118, Processing Time 0.026 seconds

Use of Sodium Hypochlorite for the Control of Bakanae Disease in Rice (벼 키다리병 방제를 위한 차아염소산나트륨 이용)

  • Shin, Dong Bum;Goh, Jaeduk;Lee, Bong Choon;Kang, In Jeong;Kang, Hang-Won
    • Research in Plant Disease
    • /
    • v.20 no.4
    • /
    • pp.259-263
    • /
    • 2014
  • For application of sodium hypochlorite as a seed disinfectant to the control of bakanae disease caused by Gibberella fujikuroi in rice, we investigated the effects of sodium hypochlorite for antifungal activity, eliminating fungus from seeds and reducing disease occurrence in vitro and greenhouse. The viability of the pathogen was significantly reduced at $80{\mu}l/l$ concentration of sodium hypochlorite, and the pathogens did not grow at over $100{\mu}l/l$ concentration of sodium hypochlorite. The effect of eliminating fungus was 90% at treatment of 0.3% sodium hypochlorite solution to infected rice seeds for eight hours. When the rice seeds were soaked into 0.5% and 0.3% sodium hypochlorite solutions for twelve hours, the disease incidences of rice seedling were remarkably reduced to 4.3% and 4.7%, respectively, compared to 97.3% of non-treatment control. The rates of seedling stand were 29.1% and 26.9% higher with the sodium hypochlorite treatment than that of non-treatment control. When prochloraz and sodium hypochlorite was treated to naturally severely infested rice seeds with bakanae disease, the disinfection effect was higher than that of prochloraz alone treatment. When the seeds were soaked in sodium hypochlorite before or after prochloraz, the rate of seed contamination was low as 4.0% or 6.3%, respectively, compared to prochloraz alone as 13.7%. The disease incidence was low as 3.7% or 8.3%, respectively, compared to prochloraz alone as 14.3%. The disinfection effect of treatment with prochloraz after sodium hypochlorite was higher than that of treatment with prochloraz before sodium hypochlorite.

Bactericidal Efficacy of a Disinfectant Spray Containing a Grapefruit-seed Extract, Citric acid, Malic acid and Benzalkonium Chloride against Salmonella Typhimurium and Brucella ovis

  • Cha, Chun-Nam;Park, Eun-Kee;Jung, Ji-Youn;Yoo, Chang-Yeul;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.4
    • /
    • pp.299-303
    • /
    • 2016
  • Salmonella spp. and Brucella spp. can cause considerable diseases on both humans and animals. In addition, these microorganisms cause the economic loss in animal farming and food industry. In this study, the disinfection efficacy of a disinfectant spray, composed to grapefruit seed extract, citric acid, malic acid and benzalkonium chloride, was evaluated against S. Typhimurium and B. ovis. A bactericidal efficacy test by broth dilution method was used to determine the lowest effective dilution of the disinfectant following exposure to test bacteria for 30 min at $4^{\circ}C$. The disinfectant and test bacteria were diluted with hard water (HW) or organic matter suspension (OM) according to treatment condition. On HW condition, the bactericidal activity of the disinfectant spray against S. Typhimurium and B. ovis was 5 and 4 fold dilutions, respectively. On OM condition, the bactericidal activity of the disinfectant spray was 2 and 1 fold dilutions against S. Typhimurium and B. ovis, respectively. As the disinfectant spray possesses bactericidal efficacy against foodborne pathogens such as S. Typhimurium and B. ovis, the disinfectant spray can be used to control the spread of bacterial diseases.

Soil Environment and Soil-borne Plant Pathogen Causing Root Rot Disease of Ginseng (인삼 뿌리썩음병 발병에 미치는 토양전염성병원균과 토양환경요인)

  • Shin, Ji-Hoon;Yun, Byung-Dae;Kim, Hye-Jin;Kim, Si-Ju;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.370-376
    • /
    • 2012
  • Disease is the major problem in ginseng cultivation from seed stratification, soil preparation prior to planting, right through to drying of the roots. There are many soil-borne disease pathogen in rhizosphere soil environment, furthermore occurrence of diseases by a diverse group of fungi and related organisms are closely related to various soil condition. Observable symptoms for soil-borne diseases include wilting, leaf death and leaf fall, death of branches and limbs and in severe cases death of the whole plant. The fungus Cylindrocarpon destructans is the cause of root rot characterized by a decay of the true root system in many ginseng production areas in Korea. Some pathogens are generally confined to the juvenile roots whilst others are capable of attacking older parts of the root system. However, the relation between the soil environmental characteristics and ginseng root rot by soil-borne disease pathogen is not clearly identified in ginseng field. In this paper, we reviewed soil-borne plant pathogen causing root rot disease of ginseng with respect to soil environment.

Identification of Endophytic Bacteria in Panax ginseng Seeds and Their Potential for Plant Growth Promotion (인삼종자로부터 분리된 내생균의 동정과 식물생장 촉진 관련 활성의 평가)

  • Um, Yurry;Kim, Bo Ra;Jeong, Jin Ju;Chung, Chan Moon;Lee, Yi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.4
    • /
    • pp.306-312
    • /
    • 2014
  • Endophytes are microorganisms that live in the internal tissues of plants without harming the host plants. In this symbiotic relationship, the host plants provide nutrients and shelter to the endophytes, in turn, endophytes can promote the growth of host plants and act as a biological control agents against plant pathogens. Plant-microbe interactions like this are noted for natural methods for sustainable agriculture and environmental conservation. However, in spite of the infinite potential, there are only a few reports on the endophytes present in ginseng. In this study, we isolated and identified the endophytes from Panax ginseng seeds and evaluated the biological activities (IAA production ability, nitrogen fixation ability, phosphate solubilization capacity, siderophore production ability, and antifungal activities) of the endophyte isolates. Eight different endophytes were identified by 16S rRNA sequencing. Most of the endophytes have antibiotic and plant growth promoting (PGP) activities. Particularly, PgSEB5-37E have the highest antibiotic activity, both PgSEB5-37B and PgSEB5-37H have high PGP traits such as an abilities to produce IAA, solubilize phosphate and fix nitrogen. These results indicated that the endophytes from P. ginseng seeds may have applicable value to many industries. In order to use the isolated endophytes, quantitative analysis and field tests are needed to be performed.

Biocontrol of Leaf Mustard Powdery Mildew Caused by Erysiphe cruciferarm using Bacillus velezensis YP2 (Bacillus velezensis YP2의 겨자채 흰가루병의 생물적 방제)

  • Lee, Sang Yeob;Weon, Hang Yeon;Kim, Jeong Jun;Han, Ji Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.369-374
    • /
    • 2016
  • Bacillus velezensis YP2 inhibited the mycelial growth of several plant pathogens including Cercespora spp., Septoria sp., Phoma sp., Botrytis cinerea and Sclerotinia scleotiorum occurring in leafy vegetables. Control efficacy for powdery mildew caused by Erysiphe cruciferarm on red leaf mustard and cheong mustard by treatment of spraying with 10-fold diluted Luria-Bertani (LB) broth of B. velezensis YP2 was 91.8% and 80.9%, respectively. When B. velezensis YP2 was treated four times with five-day interval, three times at seven-day interval and two times at ten day interval in the greenhouse test, the control effect of red leaf mustard powdery mildew was 70.6%, 65.0% and 40.9%, respectively. Also B. velezensis YP2 could promote the seed germination and plant growth of led leaf mustard. The results showed that the culture broth of B. velezensis YP2 was very effective to control the powdery mildew of leaf mustard.

Identification and molecular characterization of downy mildew resistant gene candidates in maize (Zea mays subsp. Mays)

  • Kim, Jae Yoon;Kim, Chang-Ho;Kim, Kyung Hee;Lee, Byung-Moo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.113-113
    • /
    • 2017
  • Downy mildew (DM), caused by several species in the Peronosclerospora and Scleropthora genera, is a major maize (Zea mays L.) disease in tropical or subtropical regions. DM is an obligate parasite species in the higher plants and spreads by oospores, wind, and mycelium in seed surface, soil, and living hosts. Owing to its geographical distribution and destructive yield reduction, DM is one of the most severe maize diseases among the maize pathogens. Positional cloning in combination with phenotyping is a general approach to identify disease resistant gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combination strategy to improve the identification of disease resistant gene candidates. Downy mildew (DM) resistant maize was selected from five cultivars using the spreader row technique. Positional cloning and bioinformatics tools identified the DM resistant QTL marker (bnlg1702) and 47 protein coding genes annotations. Eventually, 5 DM resistant gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative RT-PCR without fine mapping of the bnlg1702 locus. Specifically, we provided DM resistant gene candidates with our new strategy, including field selection by the spreader row technique without population preparation, the DM resistance region identification by positional cloning using bioinformatics tools, and expression level profiling by quantitative RT-PCR without fine mapping. As whole genome information is available for other crops, we propose applying our novel protocol to other crops or for other diseases with suitable adjustment.

  • PDF

A Study on Addition & Subtraction of Formula by Four Seasons (사시(四時)에 따른 처방(處方) 가가(加減)에 관한 고찰(考察))

  • Kim, Jin-Hyun;Eum, Dong-Myung;Kim, Sang-Kyun;Kim, Chul;Jang, Hyun-Chul;Yea, Sang-Jun;Song, Mi-Young
    • Journal of Korean Medical classics
    • /
    • v.22 no.3
    • /
    • pp.133-144
    • /
    • 2009
  • Objective : We try to find out the literature and clinical evidences of seasonal formula through the analysis of the addition and subtraction of medical herbs in the formula according to the season. Method : In this study, we analyzed 122 seasonal prescriptions from "Dong-uibogam(東醫寶鑑)", "Bang-yakhappyeon(方藥合編)", "Jeongchijunsueng(證治準繩)", "Dangyesimbeop(丹溪心法)", "Uihakimmun(醫學入門)", "Uihakjeongjeon(醫學正傳)", "Gyeong-akjeonseo(景岳全書)" and "Taepyeonghyeminhwajegukbang(太平惠民和劑局方)". Results : In spring, pungent-warm herbs such as the dried rhizome of cnidium officinale Makino, the dried root of SEdebouriella divaricata (Turcz.) Schischk. are used. In summer, bitter-cold such as the dried root of Scutellaria baicalensis Georgi, the dried rhizome of Coptis chinensis Franch. or pungent herbs such as the dried aerial part of Elsholtzia splendens Nakai, the dried ripe seed of Dolichos lablab L. are added. In fall and winter, pungent-bitter-hot herbs such as the dried ripe fruit of Evodia rutaecarpa Benth., the dried rhirome of Zingiber officinale Rosc. are used. Conclusions : In this paper, we have shown that several medical herbs could be added and subtracted in the formula according to the season because they have the seasonal characteristic Gi or treat seasonal pathogens.

  • PDF

Bacillus spp. as Biocontrol Agents of Root Rot and Phytophthora Blight on Ginseng

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.63-66
    • /
    • 2004
  • Ginseng (Panax ginseng) is one of the most widely cultivated medicinal herbs in Korea. However, yield losses reached up to 30-60% due to various diseases during 3 or 5 years of ginseng cultivation in the country. Therefore, successful production of ginseng roots depends primarily on the control of diseases. The objective of this study was to select potential biocontrol agents from rhizobacteria isolated from various plant internal root tissues for the control of multiple ginseng diseases as an alternative to fungicides. Among 106 Bacillus strains, two promising biocontrol agents, Bacillus pumilus strain B1141 and Paenibacillus lentimobus strain B1146, were selected by screening against root rot of ginseng caused by Cylindrocarpon destructans in a greenhouse. Pre-inoculation of selected isolates to seed or l-year-old root of ginseng resulted in stimulation of shoot and/or root growth of seedlings, and successfully controlled root rot caused by C. destructans (P<0.05). Furthermore, drenching of cell suspension of the selected isolates on seedling-growing pots reduced the incidence of Phytophthora blight after the seedlings were challenged with zoospores of Phytophthora cactorum (P<0.05). P. lentimorbus strain B1146 showed antifungal activity against various soil-borne pathogens in vitro, while B. pumilus strain B1141 did not show any. Results of this study suggest that some rhizobacteria can induce resistance against various plant diseases on ginseng.

Biocontrol of Ginseng Damping-off by Bacillus velezensis CC112 (Bacillus velezensis CC112 균주의 인삼 잘록병에 대한 생물적 방제)

  • Lee, Sang Yeob;Song, Jaekyeong;Park, Kyeong Hun;Weon, Hang Yeon;Kim, Jeong Jun;Han, Ji Hee
    • The Korean Journal of Mycology
    • /
    • v.44 no.3
    • /
    • pp.176-183
    • /
    • 2016
  • Bacillus velezensis CC112 inhibited the mycelial growth of several plant pathogens, including Rhizoctonia solani, causing damping-off on ginseng. The control efficacies of B. velezensis CC112 against R. solani by seed dipping in LB and BSM broth diluted 10 times, soil dipping, and soil drenching with LB broth diluted 10 times were 65.8%, 67.1%, and 64.2%, respectively. Treatment of soil drenching with the 100 times diluted prototype of B. velezensis CC112 against R. solani and Pythium sp. by soil revealed control efficacies of 77.3% and 65.7%, respectively. These results indicate that B. velezensis CC112 is a prospective biofungicide for the biological control of ginseng damping off.

Effect of Electron Beam Irradiation on Selected Vegetable Seeds and Plant-Pathogenic Microorganisms (전자선 조사의 채소 종자 및 식물병원성 미생물에 대한 영향)

  • Bae, Young-Min
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1415-1419
    • /
    • 2013
  • Electron beam (EB) irradiation was tested to determine the dose required to eradicate plant pathogens, such as Botrytis cinerea and Agrobacterium rhizogenes, from the infected seeds without affecting the germination rate of the irradiated vegetable seeds, including crown daisy, cucumber, hot pepper, green onion, leaf lettuce, and radish seeds. EB irradiation of 1.5 kGy and 2 kGy was sufficient to kill 100% of hairy root disease bacteria and gray mold conidia, respectively. EB irradiation showed no effect or minimal effect on the germination rate of the crown daisy, cucumber, green onion, and radish seeds. However, the germination rate of the hot pepper and leaf lettuce seeds was significantly reduced by using 2 kGy of EB irradiation. Difference in susceptibility to EB irradiation appears not to be related to the weight of each seed, but to the intrinsic characteristic of each plant. Conclusively, EB irradiation might be a useful way to decontaminate crown daisy, cucumber, green onion, and radish seeds.