• Title/Summary/Keyword: seed filling

Search Result 83, Processing Time 0.028 seconds

Seed layer deposition using sputtering for high aspect ratio via (고종횡비 비아상의 스퍼터링을 이용한 씨드층 형성)

  • Song, Yeong-Sik;Im, Tae-Hong;Lee, Jae-Ho;Kim, Jong-Ryeol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.68-69
    • /
    • 2013
  • 금속 씨드 층(seed layer)을 직경 $10{\mu}m$, 깊이 $100{\mu}m$, 고종횡비 10:1 비아에 스퍼터링하였다. 금속 씨드 층의 두께는 스퍼터링 시간, 압력, 및 타겟파워를 변화하여 조절하였다. 금속 씨드층 스퍼터링 후 전기도금에 의해 구리 충전을 시도하였다. 비아의 고종횡비가 증가하면 비아 폭이 좁아져 비아의 하부층과 하단 측면 두께는 비아 상부 측면 두께만큼 충분하지 않아 문제가 될 수 있다. 스퍼터링 조건을 최적화 함으로써 씨드층의 특성을 높이고, 비아 홀 지름의 감소 속도를 줄일 수 있었다. 종래의 스퍼터링 방식을 이용하여 비아 입구의 opening percentage를 약 64%로 하고, 하부 씨드층 두께가 46.7 nm 인 금속 씨드층을 형성할 수 있었다. 이 씨드층 상에 전기도금으로 Cu filling을 성공적으로 할 수 있었다.

  • PDF

Copper Filling to TSV (Through-Si-Via) and Simplification of Bumping Process (비아 홀(TSV)의 Cu 충전 및 범핑 공정 단순화)

  • Hong, Sung-Jun;Hong, Sung-Chul;Kim, Won-Joong;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.79-84
    • /
    • 2010
  • Formation of TSV (Through-Si-Via) with an Au seed layer and Cu filling to the via, simplification of bumping process for three dimensional stacking of Si dice were investigated. In order to produce the via holes, the Si wafer was etched by a DRIE (Deep Reactive Ion Etching) process using $SF_6$ and $C_4F_8$ plasmas alternately. The vias were 40 ${\mu}m$ in diameter, 80 ${\mu}m$ in depth, and were produced by etching for 1.92 ks. On the via side wall, a dielectric layer of $SiO_2$ was formed by thermal oxidation, and an adhesion layer of Ti, and a seed layer of Au were applied by sputtering. Electroplating with pulsed DC was applied to fill the via holes with Cu. The plating condition was at a forward pulse current density of 1000 mA/$dm^2$ for 5 s and a reverse pulse current density of 190 mA/$dm^2$ for 25 s. By using these parameters, sound Cu filling was obtained in the vias with a total plating time of 57.6 ks. Sn bumping was performed on the Cu plugs without lithography process. The bumps were produced on the Si die successfully by the simplified process without serious defect.

Impact of Environmental Factors and Altitude on Growth and Reproductive Characteristics of Teak (Tectona grandis Linn. f.) in Southern India

  • Krishnamoorthy, M.;Palanisamy, K.;Francis, A.P.;Gireesan, K.
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.4
    • /
    • pp.353-366
    • /
    • 2016
  • The effect of different environmental conditions and altitudes on the growth and reproductive characteristics in 12 teak plantations at 4 different blocks (Cauvery canal bank, Topslip and Parambikulam (Tamil Nadu), Nilambur and Wayanad (Kerala) of Southern India was investigated. The annual rainfall and mean monthly temperature of the study areas varied significantly from 1390 to 3188 mm and 16 to $38^{\circ}C$ respectively. The teak plantations in Cauvery canal bank which grow in continuous moisture condition (8-10 months) retain the leaf for longer period due to moisture resulting continuous supply of photosynthates leads to fast and outstanding growth. The girth at breast height (GBH) of 34-years-old tree in canal area was similar to that of 40 to 49-years-old trees in other locations, indicating that teak plantations with regular watering and silvicultural practices may be harvested at the age of 30 years. The leaf fall, flowering and fruiting showed significant variations in different teak plantations due to environmental factors and altitudes. It was found that increase of rainfall enhances number of flowers in the inflorescence in teak. Tholpatty (block-IV) showed more flowering in a inflorescence (3,734-3,744) compared to other plantations (1,678-3,307). Flowering in Nilambur and Wayanad coincided with heavy rainfall resulting low fruitset (1.1-2.3%) probably heavy rainfall ensuing restriction of pollinators for effective pollination. On the other hand, flowering in Cauvery canal bank (Block-I) was not coincided with high rainfall exhibited high fruitset (2-3%). About 66 to 76% of the fruits in different plantations were empty, and it is one of the main reasons for poor germination in teak. The seeds of Topslip and Parambikulam (Block-II) showed higher seed weight, maximum seed filling and good germination indicating that the environmental factors and altitude play significant role in fruit setting and seed filling in teak. In addition, the teak plantations in Topslip and Parambikulam showed good growth suggesting that plantations in the altitude range of approximately 550-700 m may be suitable for converting into seed production areas for production of quality seeds.

Seed Development and Germinability of Soybeans at Various Filling Stages (등숙기간중 콩의 종실발달과 발아능력)

  • Park, Keun-Yong;Park, Hee-Woon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.4
    • /
    • pp.416-421
    • /
    • 1984
  • Six soybean cultivars were used to study their seed development and germinability after flowering, in 1977 and 1978. The earlier varieties showed the faster seed development, but indeterminate types resulted in slower development. The earliest germinability was found in 15 to 25 days after flowering when dried with the pod shell. The germination of the seeds dried without pod shell, however, was inhibited significantly in early seed filling stages. Regular germinability of the Hill cultivar in a cold test was 40-45 days after flowering, or 10 to 15 days earlier than the physiological maturity.

  • PDF

Changes of Antioxidant Contents during Grain Filling in Different Plant Types of Sesame (참깨 초형별 등숙에 따른 항산화성분 함량의 변화)

  • Ryu, Su-Rho;Lee, Jung-Il;Choi, Chang-Yeol;Kang, Sam-Sik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.1
    • /
    • pp.23-30
    • /
    • 1993
  • This study was conducted to obtain the fundamental information on antioxidant component as affected by process of grain filling in different plant types of sesame. Sesamin and sesamolin as antioxidant components, oil content and seed weight were investigated for two plant types with different by branching habit. The sesamin and sesamolin contents in grains followed a pattern of increase immediately after flowering in branch type and monocapsule habit than non-branch type and tricapsule habit. But they started to decrease around 45 days after flowering, which oil content and seed weight continued to increase until maturity. The sesamin content increased quickly up from 10th to 40th day after flowering and showed almost maximum at 43th day after flowering. The sesamolin content increased quickly up from 20th to 30th day after flowering and showed almost maximum at 45th day after flowering. The oil content increased quickly up from 20th to 30th day after flowering and showed almost maximum at 47th day after flowering. The seed weight increased quickly up from 20th to 40th day after flowering and showed almost maximum at 48th day. The sesamin content, sesamolin content, oil content and seed weight showed almost maximum at from 43th to 48th day after flowering. So that this period was considered to be of physiological maturity.

  • PDF

A Study on the Cobalt Electrodeposition of High Aspect Ratio Through-Silicon-Via (TSV) with Single Additive (단일 첨가제를 이용한 고종횡비 TSV의 코발트 전해증착에 관한 연구)

  • Kim, Yu-Jeong;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.140-140
    • /
    • 2018
  • The 3D interconnect technologies have been appeared, as the density of Integrated Circuit (IC) devices increases. Through Silicon Via (TSV) process is an important technology in the 3D interconnect technologies. And the process is used to form a vertically electrical connection through silicon dies. This TSV process has some advantages that short length of interconnection, high interconnection density, low electrical resistance, and low power consumption. Because of these advantages, TSVs could improve the device performance higher. The fabrication process of TSV has several steps such as TSV etching, insulator deposition, seed layer deposition, metallization, planarization, and assembly. Among them, TSV metallization (i.e. TSV filling) was core process in the fabrication process of TSV because TSV metallization determines the performance and reliability of the TSV interconnect. TSVs were commonly filled with metals by using the simple electrochemical deposition method. However, since the aspect ratio of TSVs was become a higher, it was easy to occur voids and copper filling of TSVs became more difficult. Using some additives like an accelerator, suppressor and leveler for the void-free filling of TSVs, deposition rate of bottom could be fast whereas deposition of side walls could be inhibited. The suppressor was adsorbed surface of via easily because of its higher molecular weight than the accelerator. However, for high aspect ratio TSV fillers, the growth of the top of via can be accelerated because the suppressor is replaced by an accelerator. The substitution of the accelerator and the suppressor caused the side wall growth and defect generation. The suppressor was used as Single additive electrodeposition of TSV to overcome the constraints. At the electrochemical deposition of high aspect ratio of TSVs, the suppressor as single additive could effectively suppress the growth of the top surface and the void-free bottom-up filling became possible. Generally, copper was used to fill TSVs since its low resistivity could reduce the RC delay of the interconnection. However, because of the large Coefficients of Thermal Expansion (CTE) mismatch between silicon and copper, stress was induced to the silicon around the TSVs at the annealing process. The Keep Out Zone (KOZ), the stressed area in the silicon, could affect carrier mobility and could cause degradation of the device performance. Cobalt can be used as an alternative material because the CTE of cobalt was lower than that of copper. Therefore, using cobalt could reduce KOZ and improve device performance. In this study, high-aspect ratio TSVs were filled with cobalt using the electrochemical deposition. And the filling performance was enhanced by using the suppressor as single additive. Electrochemical analysis explains the effect of suppressor in the cobalt filling bath and the effect of filling behavior at condition such as current type was investigated.

  • PDF

Correlation Analysis between Azuki Bean Quality Characteristics and Sediment Yield

  • Byong Won Lee;Seok Bo Song;Yeon Ju Ahn;Ji Ho Chu;Ji Yeong Kim;Myeong Eun Choi;San Ik Han;Chung Song Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.316-316
    • /
    • 2022
  • Azuki bean is the important bean crop in Korea, and is traditionally used as a filling material for red bean porridge, rice cakes, and bread, as well as for sediment. So far, the National Insititute of Crop Science has developed azuki bean varieties for various uses, such as for sediment, tea, and azuki bean sprouts. Among azuki bean elite lines, 25 strains were used to analyze the correlation between red bean quality characteristics and sediment yield. The crude protein of red beans was 25.0-28.9%, ash content was 3.8-5.3%, and fat was 0.4-1.0%. As for the appearance quality characteristics of azuki bean, one hundred seed weight was 11.1-19.5 g, the length of seed was 6.45-8.49 mm, the width seed was 4.84-6.45 mm, and the withd/lenght ratio was 0.72-0.89. When the azuki bean were boiled, the thickness of the seed coat was 0.14-0.27 mm and the length ratio of seed was 0.65-0.76 mm, showing that the length of seed was slightly larger than the width. The yield of azuki bean sediment was 239-284% for whole red bean paste, and 144-203% for fine azuki bean paste. As a result of analyzing the correlation between the quality characteristics of azuki beans, such as protein, husk and seed weight, and the yield of azuki bean sediment, the yield of whole azuki bean sediment showed a negative correlation with the seed coat thickness and the length ratio of the original grain at -0.62 and -0.45, respectively. The yield of fine sediment showed a negative correlation with the length ratio of whole azuki beans at -0.49, and a positive correlation with that of white beans at 0.41. However, protein and ash content did not show any correlation with sediment yield. In view of the above results, it is thought that it would be better to have a high seed weight or a low width/length ratio of seed to develope azuki bean cultivar for sediment.

  • PDF

Improvement of the Throwing Power (TP) and Thickness Uniformity in the Electroless Copper Plating (무전해 동도금 Throwing Power (TP) 및 두께 편차 개선)

  • Seo, Jung-Wook;Lee, Jin-Uk;Won, Yong-Sun
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • The process optimization was carried out to improve the throwing power (TP) and the thickness uniformity of the electroless copper (Cu) plating, which plays a seed layer for the subsequent electroplating. The DOE (design of experiment) was employed to screen key factors out of all available operation parameters to influence the TP and thickness uniformity the most. It turned out that higher Cu ion concentration and lower plating temperature are advantageous to accomplish uniform via filling and they are accounted for based on the surface reactivity. To visualize what occurred experimentally and evaluate the phenomena qualitatively, the kinetic Monte Carlo (MC) simulation was introduced. The combination of neatly designed experiments by DOE and supporting theoretical simulation is believed to be inspiring in solving similar kinds of problems in the relevant field.

Effect of Nitrogen and Silicon Nutrition on Bioactive Gibberellin and Growth of Rice under Field Conditions

  • Hwang, Sun-Joo;Hamayun, Muhammad;Kim, Ho-Youn;Na, Chae-In;Kim, Kil-Ung;Shin, Dong-Hyun;Kim, Sang-Yeol;Lee, In-Jung
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • Gibberellins are growth hormones that play a pivotal role in the growth and development of plants. Present investigations were carried to check the effect of nitrogen(N) and silicon(Si) on bioactive $GA_1$ and its immediate precursor $GA_{20}$ at different growth stages of two rice cultivars with different maturity traits. It was observed that the endogenous bioactive $GA_1$ level gradually increased during vegetative stage and anthesis stage of both Junghwabyeo(early flowering cultivar) and Daesanbyeo(late flowering cultivar). However, the $GA_1$ and $GA_{20}$ content start decreasing during the seed filling stage in both rice cultivars, which indicated a possible relationship of bioactive $GA_1$ and floral development. Our results also confirmed that early 13-hydroxylation pathway was operated at all developmental stages of rice plant. Variation in the levels of the endogenous gibberellins in rice shoots were measured by GCMS-SIM using $^2H_2$-labeled gibberellins as internal standards. Combined application of N and Si enhanced growth parameters and reduced lodging index of both rice cultivars. It was thus concluded that the level of physiologically active $GA_1$ increased during vegetative and early reproductive stage, but starts declining at seed filling stage.

  • PDF

Transcript Analysis of Wheat WAS-2 Gene Family under High Temperature Stress during Ripening Period

  • Ko, Chan Seop;Kim, Jin-Baek;Hong, Min Jeong;Kim, Kyeong Hoon;Seo, Yong Weon
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.363-380
    • /
    • 2018
  • Wheat is frequently exposed to high temperature during anthesis and ripening period, which resulted in yield loss and detrimental end-use-quality. The transcriptome analysis of wheat under high temperature stress during the early stage of the grain filling period was undertaken. Three expression patterns of differentially expressed genes (DEGs) during grain filling period were identified. The DEGs of seed storage protein and starch-branching enzyme showed continuous increases in their expressions during high temperature stress, as well as during the recovery period. The activities of the enzymes responsible for the elimination of antioxidants were significantly affected by exposure to high temperature stress. Only the WAS-2 family genes showed increased transcription levels under high temperature stress in dehulled spikelets. The relative transcription levels for sub-genome specific WAS-2 genes suggested that WAS-2 genes reacted with over-expression under high temperature stress and decreased back to normal expression during recovery. We propose the role of WAS-2 as a protective mechanism during the stage of grain development under high temperature in spikelets.