• Title/Summary/Keyword: seed coat

Search Result 357, Processing Time 0.041 seconds

An Optimum Harvest Time for Chinese Milk Vetch (Astragalus sinicus L.) Seed Production (자운영 종자생산을 위한 적정 수확시기 구명)

  • Lee, Byung-Jin;Choi, Zhin-Ryong;Kim, Sang-Yeol;Oh, Seong-Hwan;Kim, Jun-Hwan;Hwang, Woon-Ha;Ahn, Jong-Woong;Oh, Byeong-Geun;Ku, Yeon-Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.70-74
    • /
    • 2008
  • To determine an optimum harvest time for chinese milk vetch (CMV) seed production, the seeds were harvested at 4 times, according to 25, 30, 35, and 40 day after flowering (DAF), in Miryang, southern part of Korea. CMV plants were manually harvested at each time and seed threshing was done by rice threshing machine. Seed yield, 1,000-seed weight, germinability, and hard coat ratio were investigated. Seed yield was the highest, 53.9 kg/300 kg by dry weight (DW) of CMV plant, at 35 DAF. 1,000-seed weight increased according to seed harvest time from 25 DAF to 40 DAF when it was 3.10 g. The germination ratios of seeds harvested at 4 times were not significantly different when the seeds stored until August 1. In case of long period of CMV seeds stored, the seeds harvested later showed higher germination rate. On the other hand, because the hard coat ratio causing germination inhibition was declined with an increase of storage period, it was higher in the seeds harvested later. There was no difference among the seeds harvested at 4 times at October 1. In conclusion, it was presumed that an optimum harvest time for CMV seed production should be at 35 DAF considering seed yield, weight and germinability.

Embryology of Gymnospermium microrrhynchum (Berberidaceae) (한계령풀의 생식기관 발생형태)

  • Ghimire, Balkrishna;Shin, Dong-Yong;Heo, Kweon
    • Korean Journal of Plant Taxonomy
    • /
    • v.40 no.4
    • /
    • pp.226-233
    • /
    • 2010
  • An intensive study of the embryology of Gymnospermium microrrhynchum was conducted to provide information regarding a discussion of the phylogenetic relationships of the genus, which is yet unstudied. Our results indicated that Gymnospermium is similar to other genera of Berberidaceae in terms of its embryological features. Nevertheless, newly reported and unique features are the well-developed endothelium and the undifferentiated seed coat type. Until the study of Gymnospermium, it may have been considered to be closer to Caulophyllum and Leontice in the tribe Leonticeae. These three genera share many morphological features as well as molecular similarities, by which they are kept in the same tribe, Leonticeae. However, very little detailed embryological data regarding these genera have been published thus far. Gymnospermium was characterized according to the basic type of anther wall formation as well as its glandular tapetum, successive cytokinesis in the microspore mother cell, two-celled mature pollen grains, anatropous and crassinucellate ovules with a nucellar cap, well-developed endothelium, its Polygonum type of embryo sac formation, its nuclear type of endosperm formation, and its undifferentiated seed coat type. In comparison with Nandina, there are many differences, such as the dehiscence of the anther, the cytokinesis in the microspore mother cells, the shape of the megaspore dyad, and the seed characteristics. Although we had no available detailed embryological information regarding Caulophyllum and Leontice, which are genera that are more closely related to Gymnospermium, we could deduce from the phylogenetic relationship that Gymnospermium, Caulophyllum, and Leontice are more closely related to each other than other genera of Berberidaceae on the basis of the seed characteristics.

Correlation Analysis between Azuki Bean Quality Characteristics and Sediment Yield

  • Byong Won Lee;Seok Bo Song;Yeon Ju Ahn;Ji Ho Chu;Ji Yeong Kim;Myeong Eun Choi;San Ik Han;Chung Song Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.316-316
    • /
    • 2022
  • Azuki bean is the important bean crop in Korea, and is traditionally used as a filling material for red bean porridge, rice cakes, and bread, as well as for sediment. So far, the National Insititute of Crop Science has developed azuki bean varieties for various uses, such as for sediment, tea, and azuki bean sprouts. Among azuki bean elite lines, 25 strains were used to analyze the correlation between red bean quality characteristics and sediment yield. The crude protein of red beans was 25.0-28.9%, ash content was 3.8-5.3%, and fat was 0.4-1.0%. As for the appearance quality characteristics of azuki bean, one hundred seed weight was 11.1-19.5 g, the length of seed was 6.45-8.49 mm, the width seed was 4.84-6.45 mm, and the withd/lenght ratio was 0.72-0.89. When the azuki bean were boiled, the thickness of the seed coat was 0.14-0.27 mm and the length ratio of seed was 0.65-0.76 mm, showing that the length of seed was slightly larger than the width. The yield of azuki bean sediment was 239-284% for whole red bean paste, and 144-203% for fine azuki bean paste. As a result of analyzing the correlation between the quality characteristics of azuki beans, such as protein, husk and seed weight, and the yield of azuki bean sediment, the yield of whole azuki bean sediment showed a negative correlation with the seed coat thickness and the length ratio of the original grain at -0.62 and -0.45, respectively. The yield of fine sediment showed a negative correlation with the length ratio of whole azuki beans at -0.49, and a positive correlation with that of white beans at 0.41. However, protein and ash content did not show any correlation with sediment yield. In view of the above results, it is thought that it would be better to have a high seed weight or a low width/length ratio of seed to develope azuki bean cultivar for sediment.

  • PDF

Localization and Function of Cellulase in Endosperm Cells of Panax ginseng Seeds during Maturation and After-ripening (인삼 종자의 성숙과 후숙 과정에서 배유세포내 섬유소 가수분해효소의 분포 및 기능)

  • 유성철
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.327-335
    • /
    • 1993
  • The active sites, intracellular transport, function of cellulase in association with the disintegration of the storage materials of the endosperm cells during seed maturation and after-ripening of Panax ginseng C.A. Meyer seeds were studied by electron microscopy. Cytochemical activities of the cellulase occurred in protein bodies and vesicles of endosperm cells in seed with red seed coat. In after-ripening seed, the activities were strongly found in the cell wall of endosperm near the umbiliform layer and on neighbouring vesicles, so it is assumed that these cells begin to be decomposed. Cellulase activities were initiated before the decomposition of storage materials. But, no activity was observed in the umbiliform layer, so it is suggested that cellulase lose its activity after the completion of lysis process.

  • PDF

Ultrastructural Changes and Formation of Storage Materials in Endosperm Cells during the Seed Formation of Panax ginseng C.A. Meyer (인삼(Panax ginseng C.A. Meyer)의 종자형성에 있어서 배유세포의 미세구조의 변화 및 저장물질의 형성)

  • 유성철
    • Journal of Plant Biology
    • /
    • v.34 no.3
    • /
    • pp.201-213
    • /
    • 1991
  • This study has been carried out to investigate the ultrastructural changes, formation of storage materials in endosperm cells with electron microscope during the seed formation of Panax ginseng C.A. Meyer. In the early stage of seed formation with green seed coat, the endosperm was cellular type. Cell plate was largely composed of dictyosome vesicles in early stage of wall formation after mitosis. Central vacuole was gradually subdivided into several small-sized vacuoles. During the differentiation of plastids, some proplastid was replaced by amyloplast with starch grains and lamellar structure. A number of mitochondria with well developed cristae were distributed in cytoplasm. Rough endoplasmc reticulum, dictyosome, microbody, free ribosomes and polysomes were evenly distributed in cytoplasm. Spherical spherosomes were formed from dictyosome containing the lipid materials of even electron density. Protein bodies were formed by interfusing between vacuoles and vesicles derived from rough endoplasmic reticulum which contained the amorphous protein of high electron density.

  • PDF

Occurrence of Apple stem grooving virus in commercial apple seedlings and analysis of its coat protein sequence

  • Han, Jae-Yeong;Park, Chan-Hwan;Seo, Eun-Yeong;Kim, Jung-Kyu;Hammond, John;Lim, Hyoun-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Apple stem grooving virus (ASGV), Apple chlorotic leaf spot virus (ACLSV), and Apple stem pitting virus (ASPV) have been known to induce top working disease causing economical damage in apple. Occurrences of these three viruses in pome fruit trees, including apple, have been reported around the world. The transmission of the three viruses was reported by grafting, and there was no report of transmission through mechanical contact, insect vector, or seed except some herbaceous hosts of ASGV. As RNA extraction methods for fruit trees, Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) and multiplex RT-PCR techniques have been improved for reliability and stability, and low titer viruses that could not be detected in the past have become detectable. We studied the seed transmission ability of three apple viruses through apple seedling diagnosis using RT-PCR. Nineteen seeds obtained from commercially grown apple were germinated and two of the resulting plants were ASGV positive. Seven clones of the amplified ASGV coat protein (CP) genes of these isolates were sequenced. Overall sequence identities were 99.84% (nucleotide) and 99.76% (amino acid). Presence of a previously unreported single nucleotide and amino acid variation conserved in all of these clones suggests a possible association with seed transmission of these 'S' isolates. A phylogenetic tree constructed using ASGV CP nucleotide sequences showed that isolate S sequences were grouped with Korean, Chinese, Indian isolates from apple and Indian isolates from kiwi.