• Title/Summary/Keyword: section model tests

Search Result 295, Processing Time 0.021 seconds

Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel

  • Siddiqui, M. Salman;Rasheed, Adil;Kvamsdal, Trond
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.405-416
    • /
    • 2019
  • Aerodynamic characteristic of a small scale wind turbine under the influence of an incoming uniform wind field is studied using k-ω Shear Stress Transport turbulence model. Firstly, the lift and drag characteristics of the blade section consisting of S826 airfoil is studied using 2D simulations at a Reynolds number of 1×105. After that, the full turbine including the rotational effects of the blade is simulated using Multiple Reference Frames (MRF) and Sliding Mesh Interface (SMI) numerical techniques. The differences between the two techniques are quantified. It is then followed by a detailed comparison of the turbine's power/thrust output and the associated wake development at three tip speeds ratios (λ = 3, 6, 10). The phenomenon of blockage effect and spatial features of the flow are explained and linked to the turbines power output. Validation of wake profiles patterns at multiple locations downstream is also performed at each λ. The present work aims to evaluate the potential of the numerical methods in reproducing wind tunnel experimental results such that the method can be applied to full-scale turbines operating under realistic conditions in which observation data is scarce or lacking.

3D numerical investigation of segmental tunnels performance crossing a dip-slip fault

  • Zaheri, Milad;Ranjbarnia, Masoud;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.351-364
    • /
    • 2020
  • This paper numerically investigates the effects of a dip-slip fault (a normal or a reverse fault) movement on a segmental tunnel which transversely crosses either of this kind of faults. After calibration of the numerical model with results from literature of centrifuge physical tests, a parametric study is conducted to evaluate the effects of various parameters such as the granular soil properties, the fault dip angle, the segments thickness, and their connections stiffnesses on the tunnel performance. The results are presented and discussed in terms of the ground surface and tunnel displacements along the longitudinal axis for each case of faulting. The gradient of displacements and deformations of the tunnel cross section are also analyzed. It is shown that when the fault dip angle becomes greater, the tunnel and ground surface displacements are smaller, in the case of reverse faulting. For this type of fault offset, increasing the tunnel buried depth causes tunnel displacements as well as ground surface settlements to enhance which should be considered in the design.

An Experimental Investigation of Heat Transfer in Forced Convective Boiling of R 134a, R 123 and R 134a/R 123 in a Horizontal Tube

  • Lim, Tae-Woo;Kim, Jun-Hyo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.513-525
    • /
    • 2004
  • This paper reports an experimental study on flow boiling of pure refrigerants R l34a and R l23 and their mixtures in a uniformly heated horizontal tube. The flow pattern was observed through tubular sight glasses with an internal diameter of 10㎜ located at the inlet and outlet of the test section. Tests were run at a pressure of 0.6 MPa in the heat flux ranges of 5-50㎾/㎡, vapor quality 0-100 percent and mass velocity of 150-600㎏/㎡s. Both in the nucleate boiling-dominant region at low quality and in the two-phase convective evaporation region at higher quality where nucleation is supposed to be fully suppressed, the heat transfer coefficient for the mixture was lower than that for an equivalent pure component with the same physical properties as the mixture. The reduction of the heat transfer coefficient in mixture is explained by such mechanisms as mass transfer resistance and non-linear variation in physical properties etc. In this study, the contribution of convective evaporation, which is obtained for pure refrigerants under the suppression of nucleate boiling, is multiplied by the composition factor by Singal et al. (1984). On the basis of Chen's superposition model, a new correlation is presented for heat transfer coefficients of mixture.

Seismic Behavior of Circular Sectional RC Bridge Columns with Various Lap-splice Lengths - An Experimental Study - (축방향철근 겹침이음길이에 따른 RC원형 교각의 거동특성 - 실험적 연구 -)

  • Kim, Ick Hyun;Sun, Chang Ho;Lee, Seung Hwa;Park, Kwang Soon;Seo, Hyeong Yeol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.47-56
    • /
    • 2012
  • It is known that seismic performance of existing bridges having insufficient lateral confinements and lap-splices of longitudinal reinforcements at the base of column decreases dramatically. In this study, small-scaled model tests have been performed to confirm the seismic behaviors of RC bridge piers with various lap-splice lengths. The 8 test models have circular section with diameters of 0.65 m, 0.8 m, 1.0 m, and lap-splice lengths of B-class or C-class. The test results show that the failure modes of models are not depending on the lap-splice length itself but depend on the ratio of lap-splice length to diameter, and that the displacement ductility is also affected by this ratio.

A Case Study on Dry Stream Protection Design Using Causes Analysis of the Dry Stream Weakness Section (하천 건천화 취약구간 원인 분석을 통한 방지 대책: 설계사례)

  • Yoo, Chan-Ho;Park, Se-Young;Kang, Moon-Gu;Hwang, Jung-Soon;Oh, Byung-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1494-1501
    • /
    • 2008
  • Recently, the demand of water resources is constantly increasing due to the substantial increase of population, economy, and living standard. However, it is expected that the water resources should undergo serious problems of poor quality of water as well as shortage of water supply in the near future. Additionally, thoughtless groundwater development have caused to dry river and stream. In this study, the effectiveness of dry stream protection plan is evaluated by using 3-D groundwater flow modeling for the study area which is located in Namyangju of Kyoungi Province. Aquifer tests are performed to obtain the input data of the model. To analyze causes of dry stream using modeling results that water balance is analyzed for situations of before and after closing the wells.

  • PDF

Relation between total degradation of steel concrete bond and degree of corrosion of RC beams experimental and computational studies

  • Maurel, Olivier;Dekoster, Mickael;Buyle-Bodin, Francois
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • This paper presents a study on the effects of localized steel-concrete bond degradation on the flexural behaviour of RC beams. A finite element analysis is undertaken to complete the experimental analysis. The first part deals with an experimental study on beams where bond was removed by using plastic tube at different locations and for various lengths. The flexural behaviour was studied at global scale (load-deflection) and local scale (moment-curvature). The second part, a numerical study using a simplified special finite element (rust element) modelling the rust layer occurring between reinforcement and concrete with corrosion was conducted in order to find the relation between the degree of corrosion and the degradation of the steel-concrete bond. The computed value of the corrosion degree corresponding to the total degradation of bond has been used in a second time to model the tests, in order to evaluate the influence of the loss of bond, the steel cross section reduction, and the combination of both. The results enable to evaluate the influence of the different corrosion effects on the flexural behaviour, according to the length and the location of the corroded zone.

Further Investigations on the Financial Attributes of the Firms listed in the KOSDAQ Stock Market

  • Kim, Hanjoon
    • International Journal of Contents
    • /
    • v.9 no.2
    • /
    • pp.27-37
    • /
    • 2013
  • From the perspective of the domestic capital markets, there have been few researches on the financial characteristics of the firms belonging to the KOSDAQ(Korea Securities Dealers Automated Quotation) market, in comparison with those of the firms in the KOSPI. This study has performed three hypothesis tests to obtain the following results: By employing the 'panel data' analysis, it was found that, for the book-value based leverage, all of the six proposed IDVs were statistically significant as the financial determinants of leverage, across the two proxies measuring profitability (i.e., PFT and ROE), while all of the IDVs except VOLATILITY, also seemed to be the attributes to explain the market based dependent variable in the model with the PFT. Moreover, there may be statistically significant (structural) changes (or quasi-experiment) ) between the pre- and post-U.S. financial crisis in the year of 2008, when measured the leverage with the market-value basis with utilizing the Chow F-test. Finally, based upon the logistic regression results, the probability for a firm to be classified into the Prime section in the KOSDAQ market, may be higher, as its profit margin and asset turnover increase.

Numerical studies on the effects of the lateral boundary on soil-structure interaction in homogeneous soil foundations

  • Li, Z.N.;Li, Q.S.;Lou, M.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.421-434
    • /
    • 2005
  • In this paper, the finite element method is applied to investigate the effect of the lateral boundary in homogenous soil on the seismic response of a superstructure. Some influencing factors are presented and discussed, and several parameters are identified to be important for conducting soil-structure interaction experiments on shaking tables. Numerical results show that the cross-section width L, thickness H, wave propagation velocity and lateral boundaries of soil layer have certain influences on the computational accuracy. The dimensionless parameter L/H is the most significant one among the influencing factors. In other words, a greater depth of soil layer near the foundation should be considered in shaking table tests as the thickness of the soil layer increases, which can be regarded as a linear relationship approximately. It is also found that the wave propagation velocity in soil layer affects the numerical accuracy and it is suggested to consider a greater depth of the soil layer as the wave propagation velocity increases. A numerical study on a soil-structure experimental model with a rubber ring surrounding the soil on a shaking table is also conducted. It is found the rubber ring has great effect on the soil-structure interaction experiments on shaking table. The experimental precision can be improved by reasonably choosing the elastic parameter and width of the rubber ring.

Experimental investigation on the seismic performance of cored moment resisting stub columns

  • Hsiao, Po-Chien;Lin, Kun-Sian
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.353-366
    • /
    • 2021
  • Cored moment resisting stub column (CMSC) was previously developed by the features of adopting a core segment which remains mostly elastic and reduced column section (RCS) details around the ends to from a stable hysteretic behavior with large post-yield stiffness and considerable ductility. Several full-scale CMSC components with various length proportions of the RCSs with respect to overall lengths have been experimentally investigated through both far-field and near-fault cyclic loadings followed by fatigue tests. Test results verified that the proposed CMSC provided very ductile hysteretic responses with no strength degradation even beyond the occurrence of the local buckling at the side-segments. The effect of RCS lengths on the seismic performance of the CMSC was verified to relate with the levels of the deformation concentration at the member ends, the local buckling behavior and overall ductility. Estimation equations were established to notionally calculate the first-yield and ultimate strengths of the CMSC and validated by the measured responses. A numerical model of the CMSC was developed to accurately capture the hysteretic performance of the specimens, and was adopted to clarify the effect of the surrounding frame and to perform a parametric study to develop the estimation of the elastic stiffness.

Cyclic loading test of abnormal joints in SRC frame-bent main building structure

  • Wang, Bo;Cao, Guorong;Yang, Ke;Dai, Huijuan;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.417-430
    • /
    • 2021
  • Due to functional requirements, SRC column-RC beam abnormal joints with characteristics of strong beam weak column, variable column section, unequal beam height and staggered height exist in the Steel reinforced concrete (SRC) frame-bent main building structure of thermal power plant (TPP). This paper presents the experimental results of these abnormal joints through cyclic loading tests on five specimens with scaling factor of 1/5. The staggered height and whether adding H-shaped steel in beam or not were changing parameters of specimens. The failure patterns, bearing capacity, energy dissipation and ductile performance were analyzed. In addition, the stress mechanism of the abnormal joint was discussed based on the diagonal strut model. The research results showed that the abnormal exterior joints occurred shear failure and column end hinge flexural failure; reducing beam height through adding H-shaped steel in the beam of abnormal exterior joint could improve the crack resistance and ductility; the abnormal interior joints with different staggered heights occurred column ends flexural failure; the joint with larger staggered height had the higher bearing capacity and stiffness, but lower ductility. The concrete compression strut mechanism is still applicable to the abnormal joints in TPP, but it is affected by the abnormal characteristics.