• Title/Summary/Keyword: section load

Search Result 1,662, Processing Time 0.032 seconds

Efficient Auto Measure Sampling Method for Semiconductor Line (반도체 라인의 효율적 계측을 위한 자동 계측 샘플링 방식에 관한 연구)

  • Kim, Tae-Yeob;Sun, Dong-Seok;Lee, Jee-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2505-2510
    • /
    • 2009
  • Semiconductor processes need measurement to confirm where there are problems in quality after progresses manufacturing process. This paper suggests equipment and automatic measure sampling method that control monitoring ratio according to change point occurrence availability of process that is not measure method by the existent simple ratio rate. This paper defines measure section as ailment section, metastable section and stability section by change point standard and create statistical model of each section and developed suitable measure rate model by section. As a result, we have accomplished maximum throughput and minimum sampling number that needs to maintain constant level of quality. Proposed method minimizes load of measure process by brings production quality sophistication and decrease of process badness and lowers measure rate in stable section making perception about problem occurrence quick heightening measure rate at change point occurrence.

Dynamic Response Analysis of Open Section Structures with Warping Restraint Conditions and Impact Load Durations

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.159-164
    • /
    • 2020
  • The response analysis of frame structure with open section beams considering warping conditions and short duration load have been performed. When a beam of frame structure is subjected under torsional moment, the cross section will deform a warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. Because of impact or blast loads, the wave propagation effects become increasingly important as load duration decreases. This paper presents that a warping restraint in finite element model effects the behavior of beam deformation, dynamic mode shape and response analysis. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame. A method to estimate the number of normal modes that are important is discussed.

A Study on the Section Design of FRP-Concrete Composite Slabs Considering Failure Behaviors (파괴 거동을 고려한 FRP-콘크리트 합성 바닥판의 단면 설계에 관한 연구)

  • 조근희;김병석;이영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.641-646
    • /
    • 2002
  • FRP-concrete composite slab is consisted of brittle materials and then shows brittle failure mechanism. This study suggests a new design approach that FRP-concrete composite slab leads to ductile failure, and investigates their failure behaviors for two types of section by numerical analysis. Box-type section is higher than I-type section in load capacity to required FRP quantity. Each section was designed so that the strain of FRP plate is 50% to its ultimate strain on initiation of concrete crushing, and it is verified that displacement ductility is more than two. Ductility capacity can be improved by reducing the strain of FRP on initiation of concrete crushing, but as the strain of FRP is reduced load capacity to required FRP quantity is also reduced. Therefore section optimization study is needed considering safety and economical efficiency.

  • PDF

Transformation of Flight Load to Test Load for the Static Load Test of External Fuel Tank for Aircraft (항공기용 외부연료탱크 정하중시험을 위한 비행하중의 시험하중으로의 변환)

  • Kim, Hyun-gi;Kim, Sung Chan;Park, Sung Hwan;Ha, Byoung Geun;An, Su Hong;Kim, Jun Tae
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.80-85
    • /
    • 2021
  • In this study, for conducting a static load test of an external fuel tank used for an aircraft, the flight load acting on the external fuel tank was converted to the test load and the suitability of the converted test loads was confirmed. In order to calculate the test load from the flight load, the external fuel tank was divided into several sections. Shear load, moment by unit shear load, and unit moment were calculated for each section. Test loads for each section were then calculated by computing the shear load, the moment of each section, and flight load condition. In actual static load tests, it might not be possible to impose the test load in the calculated position due to physical constraints. Therefore, after determining positions in which the load could be imposed in the actual test, the test load calculated for each section was redistributed to selected positions. Finally, a test load plan was established by applying a whiffle tree to enhance the efficiency of the test performance while making it easier to operate the actuator. The reliability of the test load plan was verified by comparing it with flight load conditions.

Partial sectional confinement in a quasi-encased steel-concrete composite beam

  • Hassanzadeh, Amir Masoud;Dehestani, Mehdi
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.269-278
    • /
    • 2018
  • In the recent decades, the application of composite materials, due to their desirable properties, has increased dramatically. In the present study, a quasi-encased trapezoidal section composite steel beam encased with concrete is thoroughly examined. Calculation of the load bearing capacity is carried out by finite element modeling of concrete and FRP beams with trapezoidal section under the effect of controlled displacement loading. The results are then validated comparing to the existing experimental results obtained from similar studies. Further on, the materials are changed to steel and concrete, and the section is de-signed in such a way that both concrete and steel reach a high percent-age of their load bearing capacity. In the last step, the parameters affecting the bending capacity and the behavior of the semi-confined composite beam are investigated. Results revealed that the beam diagonal web thickness plays the most effective role in load bearing capacity amongst other studied parameters. Furthermore, by analyzing the results on the effect of different parameters, an optimal model for primary beam section is presented, which exhibits a greater load bearing capacity compared to the initial design with the same amount of materials used for both sections.

Experimental study on the compression of concrete filled steel tubular latticed columns with variable cross section

  • Yang, Yan;Zhou, Jun;Wei, Jiangang;Huang, Lei;Wu, Qingxiong;Chen, Baochun
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.663-675
    • /
    • 2016
  • The effects of slenderness ratio, eccentricity and column slope on the load-carrying capacities and failure modes of variable and uniform concrete filled steel tubular (CFST) latticed columns under axial and eccentric compression were investigated and compared in this study. The results clearly show that all the CFST latticed columns with variable cross section exhibit an overall failure, which is similar to that of CFST latticed columns with a uniform cross section. The load-carrying capacity decreases with the increase of the slenderness ratio or the eccentricity. For 2-m specimens with a slenderness ratio of 9, the ultimate load-carrying capacity is increased by 3% and 5% for variable CFST latticed columns with a slope of 1:40 and 1:20 as compared with that of uniform CFST latticed columns, respectively. For the eccentrically compressed variable CFST latticed columns, the strain of the columns at the loading side, as well as the difference in the strain, increases from the bottom to the cap, and a more significant increase in strain is observed in the cross section closer to the column cap.

A Study on the Types of the Displacement and Damage of Wooden Architectural Cultural Assets (목조건축문화재에 있어서 변위 및 손상 유형에 관한 연구)

  • Shin, Byeong-Uk
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.3
    • /
    • pp.25-32
    • /
    • 2019
  • This study is to derive the types of displacement and damage that occur in wooden architecture cultural assets. Although the wooden architectural cultural assets are being repaired through continuous maintenance, secondary problems frequently occur. This is because the root cause of the problem has yet to be solved. The types of displacement and damage that occur in the wooden architecture cultural asset are classified into three parts: the foundation section, the gagu section, and the roof section. In turn, the three main factors that lead to displacement and damages are the structures' load impact, the durability deterioration, and the imbalance. Load impact is a phenomenon in which the member is subjected to a load that causes deformation or cracks. Durability decline is a natural phenomenon that reduces the performance of lumber as a result of check shake, termite damage, and decay. The imbalance is a condition in which the lumber is twisted and the force balance is lost, due to either drying shrinkage or displacement of the gagu section.

A Study on Evaluating Length Limit in Tangent Section of Highway Based on Driver's Workload (운전자 작업부하를 고려한 최장 허용 직선길이 결정에 관한 연구)

  • 정봉조;강정규;김주영;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.17-26
    • /
    • 2002
  • Driver's psychophysiological load is one of the key measures for evaluating the safety of the highway. The purpose of this study is to propose and to test the methodology of evaluating the length limit of tangent section using driver's psychophysiological load. Driver's psychophysiological data is represented by the data acquire by frontal and occipital lobe. In order to compare the differences between tangent segments and the orders, real road driving experiments were performed. We collected psychophysiological data during the operation of vehicles. The experimental data were analyzed using FFT (Fast Fourier Transform) and relative power spectrum tools. These routine produces the beta value which is a major factor in consideration of driver's condition. The results in this study are summarized as follows: (1) A new methodology of evaluating the length limit in tangent section of highway using driver's psychophysiological load was proposed. (2) It was observed that driver's work load at tangent section was three times lower than that at the other section types. The beta value at tangent section is 2.219, while that at general section is 0.821. (3) It was observed that the driver's work load was significantly dropped to 0.428 after the continuous driving of 4.2km tangent section. (4) Based on the experimental subjects(from 27 Years to 31). we suggest that 30 times of design speed(3.0 km) could be acceptable as the length limit of tangent section in highway rather than the Previous limit which is 20 times of design speed(2.0km).

Collapse Characteristics of vehicle Members with Spot Welded Hat-Shaped Section under Axial Compression (점용접된 차체구조용 모자형 단면부재의 축방향 압궤특성)

  • 차천석;양인영;전형주;김용우;김정호
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.20-27
    • /
    • 2000
  • The hat shaped section members, spot welded strength resisting structures are the most energy absorbing ones of automobile components during the front-end collision. Under the static axial collapse load in velocity of 10mm/min and quasi-static collapse load in velocity of 1000mm/min, the collapse characteristics of the hat shaped section and double hat shaped section member have been analyzed by axial collapse tests with respect to the variations of spot weld pitches on the flanges. In addition, the quasi-static collapse simulations have been implemented in the same condition to the experiment's using FEM package, LS-DYNA3D. The simulated results have been verified in comparison with these from the quasi-static axial collapse tests. With the computational approaches the optimal energy absorbing structures can be suggested. Simulations are so helpful that the optimized data be supplied in designing vehicles in advance.

  • PDF

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.